• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

On the MAX MIN VERTEX COVER problem

Boria, Nicolas; Della Croce, Federico; Paschos, Vangelis (2014), On the MAX MIN VERTEX COVER problem, dans Pruhs, Kirk, Approximation and Online Algorithms11th International Workshop, WAOA 2013, Sophia Antipolis, France, September 5-6, 2013, Revised Selected Papers, Springer : Berlin Heidelberg, p. 37-48

Type
Communication / Conférence
Date
2014
Titre du colloque
11th International Workshop on Approximation and Online Algorithms, WAOA 2013
Date du colloque
2013-09
Ville du colloque
Sophia Antipolis
Pays du colloque
France
Titre de l'ouvrage
Approximation and Online Algorithms11th International Workshop, WAOA 2013, Sophia Antipolis, France, September 5-6, 2013, Revised Selected Papers
Auteurs de l’ouvrage
Pruhs, Kirk
Éditeur
Springer
Ville d’édition
Berlin Heidelberg
Isbn
978-3-319-08000-0
Pages
37-48
Métadonnées
Afficher la notice complète
Auteur(s)
Boria, Nicolas cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Della Croce, Federico

Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Résumé (EN)
We address the max min vertex cover problem, which is the maximization version of the well studied MIN INDEPENDENT DOMINATING SET problem, known to be NP-hard and highly inapproximable in polynomial time. We present tight approximation results for this problem on general graphs, namely a polynomial approximation algorithm which guarantees an $n^{−1/2}$ approximation ratio, while showing that unless P = NP, the problem is inapproximable within ratio $n^{ε-(1/2)}$ for any strictly positive. We also analyze the problem on various restricted classes of graph, on which we show polynomiality or constant-approximability of the problem. Finally, we show that the problem is fixed-parameter tractable with respect to the size of an optimal solution, to tree-width and to the size of a maximum matching.
Mots-clés
Algorithme et structure de données; Complexité; Mathématique discrète

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Efficient Algorithms for the max k -vertex cover Problem 
    Della Croce, Federico; Paschos, Vangelis (2012) Communication / Conférence
  • Vignette de prévisualisation
    Efficient algorithms for the Max k-Vertex Cover problem 
    Paschos, Vangelis; Della Croce, Federico (2014) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Improved worst-case complexity for the MIN 3-SET COVERING problem 
    Paschos, Vangelis; Della Croce, Federico; Escoffier, Bruno (2007) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Computing optimal solutions for the MIN 3-SET COVERING problem 
    Della Croce, Federico; Paschos, Vangelis (2005) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo