• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane

Campos Serrano, Juan; Dolbeault, Jean (2014), Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane, Communications in Partial Differential Equations, 39, 5, p. 806-841. http://dx.doi.org/10.1080/03605302.2014.885046

Type
Article accepté pour publication ou publié
Date
2014
Journal name
Communications in Partial Differential Equations
Volume
39
Number
5
Publisher
Marcel Dekker
Pages
806-841
Publication identifier
http://dx.doi.org/10.1080/03605302.2014.885046
Metadata
Show full item record
Author(s)
Campos Serrano, Juan
Dolbeault, Jean cc
Abstract (EN)
We investigate the large-time behavior of the solutions of the two-dimensional Keller-Segel system in self-similar variables, when the total mass is subcritical, that is less than 8π after a proper adimensionalization. It was known from previous works that all solutions converge to stationary solutions, with exponential rate when the mass is small. Here we remove this restriction and show that the rate of convergence measured in relative entropy is exponential for any mass in the subcritical range, and independent of the mass. The proof relies on symmetrization techniques, which are adapted from a paper of J.I. Diaz, T. Nagai, and J.-M. Rakotoson, and allow us to establish uniform estimates for Lp norms of the solution. Exponential convergence is obtained by the mean of a linearization in a space which is defined consistently with relative entropy estimates and in which the linearized evolution operator is self-adjoint. The core of proof relies on several new spectral gap estimates which are of independent interest.
Subjects / Keywords
Lyapunov functiona; spectral gap; relative entropy; free energy; self-similar solutions; logarithmic Hardy-Littlewood-Sobolev inequality; subcritical mass; large time asymptotics; chemotaxis; Keller-Segel model

Related items

Showing items related by title and author.

  • Thumbnail
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness and long time asymptotic for the Keller-Segel equation: The Parabolic–Elliptic Case 
    Fernandez , Giani Egana; Mischler, Stéphane (2016) Article accepté pour publication ou publié
  • Thumbnail
    Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis 
    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011) Article accepté pour publication ou publié
  • Thumbnail
    Infinite time blow-up in the Keller-Segel system: existence and stability 
    Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo