• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Microscopic Derivation of an Isothermal Thermodynamic Transformation

Olla, Stefano (2014), Microscopic Derivation of an Isothermal Thermodynamic Transformation, in Cédric Bernardin, Patricia Gonçalves, From Particle Systems to Partial Differential Equations Particle Systems and PDEs, Braga, Portugal, December 2012, Springer : Berlin Heidelberg, p. 225-238. 10.1007/978-3-642-54271-8_10

Type
Communication / Conférence
External document link
https://arxiv.org/abs/1310.0798v1
Date
2014
Conference country
PORTUGAL
Book title
From Particle Systems to Partial Differential Equations Particle Systems and PDEs, Braga, Portugal, December 2012; Particle Systems and PDEs Conference
Book author
Cédric Bernardin, Patricia Gonçalves
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-642-54270-1
Pages
225-238
Publication identifier
10.1007/978-3-642-54271-8_10
Metadata
Show full item record
Author(s)
Olla, Stefano cc
Abstract (EN)
We obtain macroscopic isothermal thermodynamic transformations by space-time scalings of a microscopic Hamiltonian dynamics in contact with a heat bath. The microscopic dynamics is given by a chain of anharmonic oscillators subject to a varying tension (external force) and the contact with the heat bath is modeled by independent Langevin dynamics acting on each particle. After a diffusive space-time scaling and cross-graining, the profile of volume converges to the solution of a deterministic diffusive equation with boundary conditions given by the applied tension. This defines an irreversible thermodynamic transformation from an initial equilibrium to a new equilibrium given by the final tension applied. Quasi static reversible isothermal transformations are then obtained by a further time scaling. Heat is defined as the total flux of energy exchanged between the system and the heat bath. Then we prove that the relation between the limit heat, work, free energy and thermodynamic entropy agree with the first and second principle of thermodynamics.
Subjects / Keywords
quasi static transformations; Clausius Inequality; Isothermal transformations; non-equilibrium statistical mechanics; hydrodynamic limit

Related items

Showing items related by title and author.

  • Thumbnail
    Microscopic derivation of an adiabatic thermodynamic transformation 
    Olla, Stefano; Simon, Marielle (2015) Article accepté pour publication ou publié
  • Thumbnail
    Non-equilibrium Isothermal transformations in a temperature gradient from a microscopic dynamics 
    Letizia, Viviana; Olla, Stefano (2017) Article accepté pour publication ou publié
  • Thumbnail
    An open microscopic model of heat conduction: evolution and non-equilibrium stationary states 
    Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2020) Article accepté pour publication ou publié
  • Thumbnail
    On the existence of L2-valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions 
    Marchesani, Stefano; Olla, Stefano (2020) Article accepté pour publication ou publié
  • Thumbnail
    Fourier's law for a microscopic model of heat conduction 
    Olla, Stefano; Bernardin, Cédric (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo