L^1-error estimate for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1
Bokanowski, Olivier; Forcadel, Nicolas; Zidani, Hasnaa (2010), L^1-error estimate for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1, Mathematics of Computation, 79, 271, p. 1395-1426. http://dx.doi.org/10.1090/S0025-5718-10-02311-2
Type
Article accepté pour publication ou publiéExternal document link
http://hal.inria.fr/inria-00267644Date
2010Journal name
Mathematics of ComputationVolume
79Number
271Publisher
AMS
Pages
1395-1426
Publication identifier
Metadata
Show full item recordAbstract (EN)
The goal of this paper is to study some numerical approximations of particular Hamilton-Jacobi-Bellman equations in dimension 1 and with possibly discontinuous initial data. We investigate two anti-diffusive numerical schemes; the first one is based on the Ultra-Bee scheme, and the second one is based on the Fast Marching Method. We prove the convergence and derive L1-error estimates for both schemes. We also provide numerical examples to validate their accuracy in solving smooth and discontinuous solutions.Subjects / Keywords
HJB equation; Fast Marching Method; Ultr-Bee scheme; L1-error estimates; antidiffusive schemeRelated items
Showing items related by title and author.
-
Hajej, Ahmed (2016) Article accepté pour publication ou publié
-
Tahraoui, Rabah; Carlier, Guillaume (2010) Article accepté pour publication ou publié
-
Zidani, Hasnaa; Forcadel, Nicolas; Bokanowski, Olivier (2010) Article accepté pour publication ou publié
-
Zidani, Hasnaa; Rao, Zhiping; Forcadel, Nicolas (2013) Article accepté pour publication ou publié
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié