On the integrability of Tonelli Hamiltonians
Sorrentino, Alfonso (2011), On the integrability of Tonelli Hamiltonians, Transactions of the American Mathematical Society, 363, 10, p. 5071-5089. http://dx.doi.org/10.1090/S0002-9947-2011-05492-9
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://arxiv.org/abs/0903.4300v2Date
2011Nom de la revue
Transactions of the American Mathematical SocietyVolume
363Numéro
10Éditeur
AMS
Pages
5071-5089
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Sorrentino, AlfonsoRésumé (EN)
In this article we discuss a weaker version of Liouville's Theorem on the integrability of Hamiltonian systems. We show that in the case of Tonelli Hamiltonians the involution hypothesis on the integrals of motion can be completely dropped and still interesting information on the dynamics of the system can be deduced. Moreover, we prove that on the $ n$-dimensional torus this weaker condition implies classical integrability in the sense of Liouville. The main idea of the proof consists in relating the existence of independent integrals of motion of a Tonelli Hamiltonian to the ``size'' of its Mather and Aubry sets. As a byproduct we point out the existence of ``non-trivial'' common invariant sets for all Hamiltonians that Poisson-commute with a Tonelli Hamiltonian.Mots-clés
Liouville's theoremPublications associées
Affichage des éléments liés par titre et auteur.
-
Viterbo, Claude; Sorrentino, Alfonso (2010) Article accepté pour publication ou publié
-
Massart, Daniel; Sorrentino, Alfonso (2011) Article accepté pour publication ou publié
-
Saadoune, Mohamed; Hess, Christian; Castaing, Charles (2006-09) Chapitre d'ouvrage
-
Hess, Christian (1990) Article accepté pour publication ou publié
-
Orieux, Michaël; Caillau, Jean-Baptiste; Combot, Thierry; Féjoz, Jacques (2018) Article accepté pour publication ou publié