• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the integrability of Tonelli Hamiltonians

Sorrentino, Alfonso (2011), On the integrability of Tonelli Hamiltonians, Transactions of the American Mathematical Society, 363, 10, p. 5071-5089. http://dx.doi.org/10.1090/S0002-9947-2011-05492-9

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/0903.4300v2
Date
2011
Journal name
Transactions of the American Mathematical Society
Volume
363
Number
10
Publisher
AMS
Pages
5071-5089
Publication identifier
http://dx.doi.org/10.1090/S0002-9947-2011-05492-9
Metadata
Show full item record
Author(s)
Sorrentino, Alfonso
Abstract (EN)
In this article we discuss a weaker version of Liouville's Theorem on the integrability of Hamiltonian systems. We show that in the case of Tonelli Hamiltonians the involution hypothesis on the integrals of motion can be completely dropped and still interesting information on the dynamics of the system can be deduced. Moreover, we prove that on the $ n$-dimensional torus this weaker condition implies classical integrability in the sense of Liouville. The main idea of the proof consists in relating the existence of independent integrals of motion of a Tonelli Hamiltonian to the ``size'' of its Mather and Aubry sets. As a byproduct we point out the existence of ``non-trivial'' common invariant sets for all Hamiltonians that Poisson-commute with a Tonelli Hamiltonian.
Subjects / Keywords
Liouville's theorem

Related items

Showing items related by title and author.

  • Thumbnail
    Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms 
    Viterbo, Claude; Sorrentino, Alfonso (2010) Article accepté pour publication ou publié
  • Thumbnail
    Differentiability of Mather's average action and integrability on closed surfaces 
    Massart, Daniel; Sorrentino, Alfonso (2011) Article accepté pour publication ou publié
  • Thumbnail
    Tightness conditions and integrability of the sequential weak upper limit of a sequence of multifunctions 
    Saadoune, Mohamed; Hess, Christian; Castaing, Charles (2006-09) Chapitre d'ouvrage
  • Thumbnail
    Measurability and integrability of the weak upper limit of a sequence of multifunctions 
    Hess, Christian (1990) Article accepté pour publication ou publié
  • Thumbnail
    Non-integrability of the minimum-time Kepler problem 
    Orieux, Michaël; Caillau, Jean-Baptiste; Combot, Thierry; Féjoz, Jacques (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo