• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Improved deduplication through parallel binning

Thumbnail
Date
2012
Dewey
Organisation des données
Sujet
deduplication optimization
DOI
http://dx.doi.org/10.1109/PCCC.2012.6407746
Conference name
2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC)
Conference date
12-2012
Conference city
Austin
Conference country
United States
Book title
2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC), proceedings
Publisher
IEEE
Year
2012
ISBN
978-1-4673-4881-2
URI
https://basepub.dauphine.fr/handle/123456789/11821
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Zhang, Zhike
Bhagwat, Deepavali
Litwin, Witold
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Long, Darrell
Schwarz, Thomas
Type
Communication / Conférence
Item number of pages
130-141
Abstract (EN)
Many modern storage systems use deduplication in order to compress data by avoiding storing the same data twice. Deduplication needs to use data stored in the past, but accessing information about all data stored can cause a severe bottleneck. Similarity based deduplication only accesses information on past data that is likely to be similar and thus more likely to yield good deduplication. We present an adaptive deduplication strategy that extends Extreme Binning and investigate theoretically and experimentally the effects of the additional bin accesses.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.