• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Scalar conservation laws with rough (stochastic) fluxes

Souganidis, Panagiotis E.; Perthame, Benoît; Lions, Pierre-Louis (2013), Scalar conservation laws with rough (stochastic) fluxes, Stochastic Partial Differential Equations: Analysis and Computations, 1, 4, p. 664-686. http://dx.doi.org/10.1007/s40072-013-0021-3

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00859393
Date
2013
Journal name
Stochastic Partial Differential Equations: Analysis and Computations
Volume
1
Number
4
Publisher
Springer
Pages
664-686
Publication identifier
http://dx.doi.org/10.1007/s40072-013-0021-3
Metadata
Show full item record
Author(s)
Souganidis, Panagiotis E.
Perthame, Benoît cc
Lions, Pierre-Louis
Abstract (EN)
We develop a pathwise theory for scalar conservation laws with quasilinear multiplicative rough path dependence, a special case being stochastic conservation laws with quasilinear stochastic dependence. We introduce the notion of pathwise stochastic entropy solutions, which is closed with the local uniform limits of paths, and prove that it is well posed, i.e., we establish existence, uniqueness and continuous dependence, in the form of pathwise $L^1$-contraction, as well as some explicit estimates. Our approach is motivated by the theory of stochastic viscosity solutions, which was introduced and developed by two of the authors, to study fully nonlinear first- and second-order stochastic pde with multiplicative noise. This theory relies on special test functions constructed by inverting locally the flow of the stochastic characteristics. For conservation laws this is best implemented at the level of the kinetic formulation which we follow here.
Subjects / Keywords
rough paths; dissipative solutions; kinetic formulation; stochastic entropy condition; stochastic conservation laws; Stochastic differential equations

Related items

Showing items related by title and author.

  • Thumbnail
    Scalar conservation laws with rough (stochastic) fluxes; the spatially dependent case 
    Lions, Pierre-Louis; Perthame, Benoît; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations 
    Lions, Pierre-Louis; Souganidis, Panagiotis E. (1995) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic averaging lemmas for kinetic equations 
    Souganidis, Panagiotis E.; Perthame, Benoît; Lions, Pierre-Louis (2012) Communication / Conférence
  • Thumbnail
    Weak Stability of Isentropic Gas Dynamics for y = 5-3. 
    Lions, Pierre-Louis; Perthame, Benoît; Souganidis, Panagiotis E. (1996) Communication / Conférence
  • Thumbnail
    Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates 
    Lions, Pierre-Louis; Perthame, Benoît; Souganidis, Panagiotis E. (1996) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo