A Generalized Fast Marching Method for Dislocation Dynamics
Carlini, Elisabetta; Forcadel, Nicolas; Monneau, Régis (2011), A Generalized Fast Marching Method for Dislocation Dynamics, SIAM Journal on Numerical Analysis, 49, 6, p. 2470-2500. http://dx.doi.org/10.1137/090770862
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00415902Date
2011Journal name
SIAM Journal on Numerical AnalysisVolume
49Number
6Publisher
SIAM
Pages
2470-2500
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we consider a generalized fast marching method (GFMM) as a numerical method to compute dislocation dynamics. The dynamics of a dislocation hypersurface in $\mathbb{R}^N$ (with $N=2$ for physical applications) is given by its normal velocity which is a nonlocal function of the whole shape of the hypersurface itself. For this dynamics, we show a convergence result of the GFMM as the mesh size goes to zero. We also provide some numerical simulations in dimension $N=2$.Subjects / Keywords
Hamilton-Jacobi equations; fast marching scheme; convergence; viscosity solutions; dislocation dynamics; nonlocal equationsRelated items
Showing items related by title and author.
-
Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2008) Article accepté pour publication ou publié
-
Homogenization of some particle systems with two-body interactions and of the dislocation dynamics Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2009) Article accepté pour publication ou publié
-
Alvarez, Olivier; Cardaliaguet, Pierre; Monneau, Régis (2005) Article accepté pour publication ou publié
-
Monneau, Régis; Forcadel, Nicolas; Al Haj, Mohammad (2013) Article accepté pour publication ou publié
-
El Hajj, Ahmad; Ibrahim, Hassan; Monneau, Régis (2009) Article accepté pour publication ou publié