Show simple item record

dc.contributor.authorLacoin, Hubert
dc.contributor.authorLeblond, Rémi
dc.date.accessioned2013-09-12T10:52:54Z
dc.date.available2013-09-12T10:52:54Z
dc.date.issued2011
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/11659
dc.language.isoenen
dc.subjectMixing Timeen
dc.subjectCutoffen
dc.subjectExclusion Processen
dc.subject.ddc519en
dc.titleCutoff phenomenon for the simple exclusion process on the complete graphen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the time that the simple exclusion process on the complete graph needs to reach equilibrium in terms of total variation distance. For the graph with n vertices and 1 ≪ k < n/2 particles, we show that the mixing time is of order 1 2n logmin(k,√n), and that around this time, for any ", the total variation distance drops from 1 − " to " in a time window whose width is of order n (i.e. in a much shorter time). Our proof is purely probabilistic and self-contained.en
dc.relation.isversionofjnlnameAlea
dc.relation.isversionofjnlvol8en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2011
dc.relation.isversionofjnlpages285-301en
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record