
Cutoff phenomenon for the simple exclusion process on the complete graph
Lacoin, Hubert; Leblond, Rémi (2011), Cutoff phenomenon for the simple exclusion process on the complete graph, Alea, 8, 1, p. 285-301
View/ Open
Type
Article accepté pour publication ou publiéDate
2011Journal name
AleaVolume
8Number
1Pages
285-301
Metadata
Show full item recordAbstract (EN)
We study the time that the simple exclusion process on the complete graph needs to reach equilibrium in terms of total variation distance. For the graph with n vertices and 1 ≪ k < n/2 particles, we show that the mixing time is of order 1 2n logmin(k,√n), and that around this time, for any ", the total variation distance drops from 1 − " to " in a time window whose width is of order n (i.e. in a much shorter time). Our proof is purely probabilistic and self-contained.Subjects / Keywords
Mixing Time; Cutoff; Exclusion ProcessRelated items
Showing items related by title and author.
-
Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
-
Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Lacoin, Hubert (2017) Article accepté pour publication ou publié
-
Lacoin, Hubert (2016) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié