Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2015), Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, 32, 3, p. 571-591. http://dx.doi.org/10.1016/j.anihpc.2014.01.007
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1308.3313v1Date
2015Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéaireVolume
32Number
3Publisher
Elsevier
Pages
571-591
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.Subjects / Keywords
Hamilton–Jacobi equation; nonlinear system; stochastic homogenizationRelated items
Showing items related by title and author.
-
Lions, Pierre-Louis; Souganidis, Panagiotis E. (2005) Article accepté pour publication ou publié
-
Da Lio, Francesca; Lions, Pierre-Louis; Barles, Guy; Souganidis, Panagiotis E. (2008) Article accepté pour publication ou publié
-
Lions, Pierre-Louis (1989) Article accepté pour publication ou publié
-
Lions, Pierre-Louis (1988) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié