• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

The Robust Set Problem: Parameterized Complexity and Approximation

Thumbnail
View/Open
mfcs12.pdf (354.6Kb)
Date
2012
Notes
LNCS n°7464
Dewey
Recherche opérationnelle
Sujet
Robust set
DOI
http://dx.doi.org/10.1007/978-3-642-32589-2_15
Conference name
37th International Symposium on Mathematical Foundations of Computer Science , MFCS 2012
Conference date
08-2012
Conference city
Bratislava
Conference country
Slovakia
Book title
Mathematical Foundations of Computer Science 2012 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012, Proceedings
Author
Widmayer, Peter
Publisher
Springer
Publisher city
Berlin Heidelberg
Year
2012
ISBN
978-3-642-32588-5
Book URL
10.1007/978-3-642-32589-2
URI
https://basepub.dauphine.fr/handle/123456789/11625
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Bazgan, Cristina
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chopin, Morgan
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Communication / Conférence
Item number of pages
136-147
Abstract (EN)
In this paper, we introduce the Robust Set problem: given a graph G = (V,E), a threshold function t:V → N and an integer k, find a subset of vertices V′ ⊆ V of size at least k such that every vertex v in G has less than t(v) neighbors in V′. This problem occurs in the context of the spread of undesirable agents through a network (virus, ideas, fire, …). Informally speaking, the problem asks to find the largest subset of vertices with the property that if anything bad happens in it then this will have no consequences on the remaining graph. The threshold t(v) of a vertex v represents its reliability regarding its neighborhood; that is, how many neighbors can be infected before v gets himself infected.We study in this paper the parameterized complexity of Robust Set and the approximation of the associated maximization problem. When the parameter is k, we show that this problem is W[2]-complete in general and W[1]-complete if all thresholds are constant bounded. Moreover, we prove that, if P ≠ NP, the maximization version is not n 1 − ε - approximable for any ε > 0 even when all thresholds are at most two. When each threshold is equal to the degree of the vertex, we show that k -Robust Set is fixed-parameter tractable for parameter k and the maximization version is APX-complete. We give a polynomial-time algorithm for graphs of bounded treewidth and a PTAS for planar graphs. Finally, we show that the parametric dual problem (n − k)-Robust Set is fixed-parameter tractable for a large family of threshold functions.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.