Bernstein–von Mises theorem for linear functionals of the density
Rivoirard, Vincent; Rousseau, Judith (2012), Bernstein–von Mises theorem for linear functionals of the density, Annals of Statistics, 40, 3, p. 1489-1523. http://dx.doi.org/10.1214/12-AOS1004
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00405849Date
2012Journal name
Annals of StatisticsVolume
40Number
3Publisher
Institute of Mathematical Statistics
Pages
1489-1523
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we study the asymptotic posterior distribution of linear functionals of the density by deriving general conditions to obtain a semi-parametric version of the Bernstein–von Mises theorem. The special case of the cumulative distributive function, evaluated at a specific point, is widely considered. In particular, we show that for infinite-dimensional exponential families, under quite general assumptions, the asymptotic posterior distribution of the functional can be either Gaussian or a mixture of Gaussian distributions with different centering points. This illustrates the positive, but also the negative, phenomena that can occur in the study of Bernstein–von Mises results.Subjects / Keywords
Bayesian nonparametric; rates of convergence; Bernstein–von Mises; adaptive estimationRelated items
Showing items related by title and author.
-
Castillo, Ismaël; Rousseau, Judith (2015) Article accepté pour publication ou publié
-
Rousseau, Judith (2010) Article accepté pour publication ou publié
-
Rousseau, Judith (2009) Communication / Conférence
-
Donnet, Sophie; Rousseau, Judith; Rivoirard, Vincent (2014) Communication / Conférence
-
Donnet, Sophie; Rivoirard, Vincent; Rousseau, Judith; Scricciolo, Catia (2018) Article accepté pour publication ou publié