Existence of an intermediate phase for oriented percolation
Lacoin, Hubert (2012), Existence of an intermediate phase for oriented percolation, Electronic Journal of Probability, 17, p. 41. http://dx.doi.org/10.1214/EJP.v17-1761
Type
Article accepté pour publication ou publiéExternal document link
http://dx.doi.org/10.1214/EJP.v17-1761Date
2012Journal name
Electronic Journal of ProbabilityVolume
17Publisher
Institute of Mathematical Statistics
Pages
41
Publication identifier
Metadata
Show full item recordAuthor(s)
Lacoin, HubertAbstract (EN)
We consider the following oriented percolation model of N×Zd: we equip N×Zd with the edge set {[(n,x),(n+1,y)]|n∈N,x,y∈Zd}, and we say that each edge is open with probability pf(y−x) where f(y−x) is a fixed non-negative compactly supported function on Zd with ∑z∈Zdf(z)=1 and p∈[0,inff−1] is the percolation parameter. Let pc denote the percolation threshold ans ZN the number of open oriented-paths of length N starting from the origin, and study the growth of ZN when percolation occurs. We prove that for if d≥5 and the function f is sufficiently spread-out, then there exists a second threshold p(2)c>pc such that ZN/pN decays exponentially fast for p∈(pc,p(2)c) and does not so when p>p(2)c. The result should extend to the nearest neighbor-model for high-dimension, and for the spread-out model when d=3,4. It is known that this phenomenon does not occur in dimension 1 and 2.Subjects / Keywords
percolation; growth model; directed polymers; phase transition; random mediaRelated items
Showing items related by title and author.
-
Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Lacoin, Hubert (2017) Article accepté pour publication ou publié
-
Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Berger, Quentin; Lacoin, Hubert (2018) Article accepté pour publication ou publié
-
Vargas, Vincent; Rhodes, Rémi; Lacoin, Hubert (2014) Document de travail / Working paper