• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Approximation with a fixed number of solutions of some multiobjective maximization problems

Thumbnail
View/Open
waoa11max.pdf (152.1Kb)
Date
2013
Dewey
Recherche opérationnelle
Sujet
Submodular functions; Multiobjective maximization problems; Approximation; Bisection; Coverage; Matching
Journal issue
Journal of Discrete Algorithms
Volume
22
Publication date
2013
Article pages
19-29
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.jda.2013.06.006
URI
https://basepub.dauphine.fr/handle/123456789/11560
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Bazgan, Cristina
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourvès, Laurent
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Article accepté pour publication ou publié
Abstract (EN)
We investigate the problem of approximating the Pareto set of some multiobjective optimization problems with a given number of solutions. Our purpose is to exploit general properties that many well studied problems satisfy. We derive existence and constructive approximation results for the biobjective versions of Max Submodular Symmetric Function (and special cases), Max Bisection, and Max Matching and also for the k-objective versions of Max Coverage, Heaviest Subgraph, Max Coloring of interval graphs.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.