• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A Reduced Basis Method for Parametrized Variational Inequalities

Haasdonk, Bernard; Salomon, Julien; Wohlmuth, Barbara (2012), A Reduced Basis Method for Parametrized Variational Inequalities, SIAM Journal on Numerical Analysis, 50, 5, p. 2656-2676. http://dx.doi.org/10.1137/110835372

View/Open
SimTechPrintsIssueNo2011-16.pdf (457.8Kb)
Type
Article accepté pour publication ou publié
Date
2012
Journal name
SIAM Journal on Numerical Analysis
Volume
50
Number
5
Publisher
SIAM
Pages
2656-2676
Publication identifier
http://dx.doi.org/10.1137/110835372
Metadata
Show full item record
Author(s)
Haasdonk, Bernard
Salomon, Julien
Wohlmuth, Barbara
Abstract (EN)
Reduced basis methods are an efficient tool for significantly reducing the computational complexity of solving parametrized PDEs. Originally introduced for elliptic equations, they have been generalized during the last decade to various types of elliptic, parabolic, and hyperbolic systems. In this article, we extend the reduction technique to parametrized variational inequalities. First, we propose a reduced basis variational inequality scheme in a saddle point form and prove existence and uniqueness of the solution. We state some elementary analytical properties of the scheme such as reproduction of solutions, a priori stability with respect to the data, and Lipschitz-continuity with respect to the parameters. An offline/online decomposition guarantees an efficient assembling of the reduced scheme, which can be solved by constrained quadratic programming. Second, we provide rigorous a posteriori error bounds with a partial offline/online decomposition. The reduction scheme is applied to one-dimensional obstacle problems. The numerical results confirm the theoretical ones and demonstrate the efficiency of the reduction technique.
Subjects / Keywords
model reduction; reduced basis methods; variational inequalities; a posteriori error bounds

Related items

Showing items related by title and author.

  • Thumbnail
    A Reduced Basis Method for the Simulation of American Options 
    Wohlmuth, Barbara; Salomon, Julien; Haasdonk, Bernard (2013) Communication / Conférence
  • Thumbnail
    Reduced Basis Methods for Pricing Options with the Black--Scholes and Heston Models 
    Burkovska, O.; Haasdonk, Bernard; Salomon, Julien; Wohlmuth, Barbara (2015) Article accepté pour publication ou publié
  • Thumbnail
    A priori convergence of the Greedy algorithm for the parametrized reduced basis method 
    Buffa, Annalisa; Maday, Yvon; Patera, Anthony T.; Prud'Homme, Christophe; Turinici, Gabriel (2012) Article accepté pour publication ou publié
  • Thumbnail
    Energy-Consistent CoRotational Schemes for Frictional Contact Problems 
    Wohlmuth, Barbara; Salomon, Julien; Hauret, Patrice; Weiss, Alexander (2008) Article accepté pour publication ou publié
  • Thumbnail
    Energy-Conserving Algorithms for a Corotational Formulation 
    Salomon, Julien; Weiss, Alexander; Wohlmuth, Barbara (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo