Show simple item record

dc.contributor.authorRisser, Laurent
HAL ID: 17551
dc.contributor.authorVialard, François-Xavier
dc.contributor.authorBaluwala, Habib Y.
dc.contributor.authorSchnabel, Julia A.
dc.date.accessioned2013-06-24T07:43:15Z
dc.date.available2013-06-24T07:43:15Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/11475
dc.language.isoenen
dc.subjectDiffeomorphic registrationen
dc.subjectSliding motionen
dc.subjectLDDMMen
dc.subjectLogDemonsen
dc.subjectRespiratory motionen
dc.subject.ddc519en
dc.titlePiecewise-diffeomorphic image registration: Application to the motion estimation between 3D CT lung images with sliding conditionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we propose a new strategy for modelling sliding conditions when registering 3D images in a piecewise-diffeomorphic framework. More specifically, our main contribution is the development of a mathematical formalism to perform Large Deformation Diffeomorphic Metric Mapping registration with sliding conditions. We also show how to adapt this formalism to the LogDemons diffeomorphic registration framework. We finally show how to apply this strategy to estimate the respiratory motion between 3D CT pulmonary images. Quantitative tests are performed on 2D and 3D synthetic images, as well as on real 3D lung images from the MICCAI EMPIRE10 challenge. Results show that our strategy estimates accurate mappings of entire 3D thoracic image volumes that exhibit a sliding motion, as opposed to conventional registration methods which are not capable of capturing discontinuous deformations at the thoracic cage boundary. They also show that although the deformations are not smooth across the location of sliding conditions, they are almost always invertible in the whole image domain. This would be helpful for radiotherapy planning and delivery.en
dc.relation.isversionofjnlnameMedical Image Analysis
dc.relation.isversionofjnlvol17en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages182-193en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.media.2012.10.001en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record