• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Asymptotics of the discrete log-concave maximum likelihood estimator and related applications

Balabdaoui, Fadoua; Jankowski, Hanna; Rufibach, Kaspar; Pavlides, Marios (2013), Asymptotics of the discrete log-concave maximum likelihood estimator and related applications, Journal of the Royal Statistical Society. Series B, Statistical Methodology, 75, 4, p. 769-790. http://dx.doi.org/10.1111/rssb.12011

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1107.3904v4
Date
2013
Journal name
Journal of the Royal Statistical Society. Series B, Statistical Methodology
Volume
75
Number
4
Publisher
Wiley
Pages
769-790
Publication identifier
http://dx.doi.org/10.1111/rssb.12011
Metadata
Show full item record
Author(s)
Balabdaoui, Fadoua
Jankowski, Hanna
Rufibach, Kaspar
Pavlides, Marios
Abstract (EN)
The assumption of log-concavity is a flexible and appealing non-parametric shape constraint in distribution modelling. In this work, we study the log-concave maximum likelihood estimator of a probability mass function. We show that the maximum likelihood estimator is strongly consistent and we derive its pointwise asymptotic theory under both the well-specified and misspecified settings. Our asymptotic results are used to calculate confidence intervals for the true log-concave probability mass function. Both the maximum likelihood estimator and the associated confidence intervals may be easily computed by using the R package logcondiscr. We illustrate our theoretical results by using recent data from the H1N1 pandemic in Ontario, Canada.
Subjects / Keywords
Confidence interval; Discrete distribution; H1N1; Log-concavity; Misspecification; Non-parametric estimation; Shape constraints
JEL
C14 - Semiparametric and Nonparametric Methods: General

Related items

Showing items related by title and author.

  • Thumbnail
    Limit distribution theory for maximum likelihood estimation of a log-concave density 
    Balabdaoui, Fadoua; Rufibach, Kaspar; Wellner, Jon (2009) Article accepté pour publication ou publié
  • Thumbnail
    On the Grenander Estimator at Zero 
    Balabdaoui, Fadoua; Jankowski, Hanna; Pavlides, Marios; Seregin, Arseni; Wellner, Jon (2011) Article accepté pour publication ou publié
  • Thumbnail
    Global convergence of the log-concave MLE when the true distribution is geometric 
    Balabdaoui, Fadoua (2014) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic properties of the maximum likelihood estimator in dichotomous logit models 
    Gouriéroux, Christian; Monfort, Alain (1981) Article accepté pour publication ou publié
  • Thumbnail
    Efficient computation of the cdf of the maximum distance between Brownian bridge and its concave majorant 
    Filali, Karim; Balabdaoui, Fadoua (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo