• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Optimal edge-coloring with edge rate constraints

Thumbnail
Date
2013
Dewey
Informatique générale
Sujet
edge coloring; fractional edge coloring; nearly bipartite graphs; scheduling algorithms; throughput maximization; greedy maximal scheduling; wireless networks
Journal issue
Networks
Volume
62
Number
3
Publication date
2013
Article pages
165-182
Publisher
Wiley
DOI
http://dx.doi.org/10.1002/net.21505
URI
https://basepub.dauphine.fr/handle/123456789/11425
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Dereniowski, Dariusz
Kubiak, W.
Ries, Bernard
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Zwols, Yori
Type
Article accepté pour publication ou publié
Abstract (EN)
We consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable. Therefore, as is commonly done [Golumbic, Algorithmic graph theory and perfect graphs, 2004], we restrict our investigation to a special class of graphs. In recent work [Birand et al., INFOCOM 2010 Proceedings, 2010], two of the authors dealt with so-called OLoP (Overall Local Pooling) graphs, a class of graphs for which similar matching-related problems are tractable (namely, in an online distributed wireless network scheduling setting). We therefore focus on these graphs and generalize the results to a larger class of graphs which we call GOLoP graphs. In particular, we show that deciding whether a given GOLoP graph has a matching sequence of length at most k can be done in linear time. In case the answer is affirmative, we show how to construct, in quadratic time, the matching sequence of length at most k. Finally, we prove that, for GOLoP graphs, the length of a shortest sequence does not exceed a constant times the least common denominator of the fractions r(e), leading to a pseudopolynomial-time algorithm for minimizing the length of the sequence. We show that the constant equals 1 for OLoP graphs and, following Seymour [Seymour, Proc. London Math. Soc., 1979], conjecture that the constant is as small as 2 for general graphs. We then show that this conjecture holds for all graphs with at most 10 vertices.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.