dc.contributor.author | Cardaliaguet, Pierre | |
dc.date.accessioned | 2013-06-06T07:37:57Z | |
dc.date.available | 2013-06-06T07:37:57Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/11356 | |
dc.language.iso | en | en |
dc.subject | game theory | |
dc.subject | variational methods | |
dc.subject | field game systems | |
dc.subject | Nash equilibrium | |
dc.subject.ddc | 519 | en |
dc.title | Weak solutions for first order mean field games with local coupling | |
dc.type | Chapitre d'ouvrage | |
dc.description.abstracten | Existence and uniqueness of a weak solution for first order mean field game systems with local coupling are obtained by variational methods. This solution can be used to devise $\epsilon-$Nash equilibria for deterministic differential games with a finite (but large) number of players. For smooth data, the first component of the weak solution of the MFG system is proved to satisfy (in a viscosity sense) a time-space degenerate elliptic differential equation. | |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 111-158 | |
dc.relation.ispartoftitle | Analysis and Geometry in Control Theory and its Applications | |
dc.relation.ispartofeditor | Piernicola Bettiol, Piermarco Cannarsa, Giovanni Colombo, Monica Motta, Franco Rampazzo | |
dc.relation.ispartofpublname | Springer | |
dc.relation.ispartofpublcity | Berlin Heidelberg | |
dc.relation.ispartofdate | 2015 | |
dc.relation.ispartofurl | 10.1007/978-3-319-06917-3 | |
dc.identifier.urlsite | https://arxiv.org/abs/1305.7015v1 | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.ispartofisbn | 978-3-319-06916-6 | |
dc.description.submitted | non | en |
dc.identifier.doi | 10.1007/978-3-319-06917-3_5 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.date.updated | 2016-10-11T15:14:09Z | |