Show simple item record

dc.contributor.authorCardaliaguet, Pierre
dc.date.accessioned2013-06-06T07:37:57Z
dc.date.available2013-06-06T07:37:57Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/11356
dc.language.isoenen
dc.subjectgame theory
dc.subjectvariational methods
dc.subjectfield game systems
dc.subjectNash equilibrium
dc.subject.ddc519en
dc.titleWeak solutions for first order mean field games with local coupling
dc.typeChapitre d'ouvrage
dc.description.abstractenExistence and uniqueness of a weak solution for first order mean field game systems with local coupling are obtained by variational methods. This solution can be used to devise $\epsilon-$Nash equilibria for deterministic differential games with a finite (but large) number of players. For smooth data, the first component of the weak solution of the MFG system is proved to satisfy (in a viscosity sense) a time-space degenerate elliptic differential equation.
dc.publisher.cityParisen
dc.identifier.citationpages111-158
dc.relation.ispartoftitleAnalysis and Geometry in Control Theory and its Applications
dc.relation.ispartofeditorPiernicola Bettiol, Piermarco Cannarsa, Giovanni Colombo, Monica Motta, Franco Rampazzo
dc.relation.ispartofpublnameSpringer
dc.relation.ispartofpublcityBerlin Heidelberg
dc.relation.ispartofdate2015
dc.relation.ispartofurl10.1007/978-3-319-06917-3
dc.identifier.urlsitehttps://arxiv.org/abs/1305.7015v1
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.ispartofisbn978-3-319-06916-6
dc.description.submittednonen
dc.identifier.doi10.1007/978-3-319-06917-3_5
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.date.updated2016-10-11T15:14:09Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record