Weak solutions for first order mean field games with local coupling
Cardaliaguet, Pierre (2015), Weak solutions for first order mean field games with local coupling, in Piernicola Bettiol, Piermarco Cannarsa, Giovanni Colombo, Monica Motta, Franco Rampazzo, Analysis and Geometry in Control Theory and its Applications, Springer : Berlin Heidelberg, p. 111-158. 10.1007/978-3-319-06917-3_5
Type
Chapitre d'ouvrageExternal document link
https://arxiv.org/abs/1305.7015v1Date
2015Book title
Analysis and Geometry in Control Theory and its ApplicationsBook author
Piernicola Bettiol, Piermarco Cannarsa, Giovanni Colombo, Monica Motta, Franco RampazzoPublisher
Springer
Published in
Berlin Heidelberg
Paris
ISBN
978-3-319-06916-6
Pages
111-158
Publication identifier
Metadata
Show full item recordAuthor(s)
Cardaliaguet, PierreAbstract (EN)
Existence and uniqueness of a weak solution for first order mean field game systems with local coupling are obtained by variational methods. This solution can be used to devise $\epsilon-$Nash equilibria for deterministic differential games with a finite (but large) number of players. For smooth data, the first component of the weak solution of the MFG system is proved to satisfy (in a viscosity sense) a time-space degenerate elliptic differential equation.Subjects / Keywords
game theory; variational methods; field game systems; Nash equilibriumRelated items
Showing items related by title and author.
-
Cardaliaguet, Pierre; Graber, Philip Jameson; Porretta, Alessio; Tonon, Daniela (2015) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre (2013) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre (2017) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Mészáros, Alpár Richárd; Santambrogio, Filippo (2016) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié