• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Weak solutions for first order mean field games with local coupling

Cardaliaguet, Pierre (2015), Weak solutions for first order mean field games with local coupling, in Piernicola Bettiol, Piermarco Cannarsa, Giovanni Colombo, Monica Motta, Franco Rampazzo, Analysis and Geometry in Control Theory and its Applications, Springer : Berlin Heidelberg, p. 111-158. 10.1007/978-3-319-06917-3_5

Type
Chapitre d'ouvrage
External document link
https://arxiv.org/abs/1305.7015v1
Date
2015
Book title
Analysis and Geometry in Control Theory and its Applications
Book author
Piernicola Bettiol, Piermarco Cannarsa, Giovanni Colombo, Monica Motta, Franco Rampazzo
Publisher
Springer
Published in
Berlin Heidelberg
Paris
ISBN
978-3-319-06916-6
Pages
111-158
Publication identifier
10.1007/978-3-319-06917-3_5
Metadata
Show full item record
Author(s)
Cardaliaguet, Pierre
Abstract (EN)
Existence and uniqueness of a weak solution for first order mean field game systems with local coupling are obtained by variational methods. This solution can be used to devise $\epsilon-$Nash equilibria for deterministic differential games with a finite (but large) number of players. For smooth data, the first component of the weak solution of the MFG system is proved to satisfy (in a viscosity sense) a time-space degenerate elliptic differential equation.
Subjects / Keywords
game theory; variational methods; field game systems; Nash equilibrium

Related items

Showing items related by title and author.

  • Thumbnail
    Second order mean field games with degenerate diffusion and local coupling 
    Cardaliaguet, Pierre; Graber, Philip Jameson; Porretta, Alessio; Tonon, Daniela (2015) Article accepté pour publication ou publié
  • Thumbnail
    Long time average of first order mean field games and weak KAM theory 
    Cardaliaguet, Pierre (2013) Article accepté pour publication ou publié
  • Thumbnail
    The convergence problem in mean field games with a local coupling 
    Cardaliaguet, Pierre (2017) Article accepté pour publication ou publié
  • Thumbnail
    First order Mean Field Games with density constraints: Pressure equals Price 
    Cardaliaguet, Pierre; Mészáros, Alpár Richárd; Santambrogio, Filippo (2016) Article accepté pour publication ou publié
  • Thumbnail
    On first order mean field game systems with a common noise 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo