Afficher la notice abrégée

dc.contributor.authorCurien, Nicolas*
dc.contributor.authorHaas, Bénédicte*
dc.contributor.authorKortchemski, Igor*
dc.date.accessioned2013-05-23T07:24:30Z
dc.date.available2013-05-23T07:24:30Z
dc.date.issued2015
dc.identifier.issn1042-9832
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/11289
dc.language.isoenen
dc.subjectBrownian Continuum Random Tree
dc.subjectGromov–Hausdorff topology
dc.subjectRandom dissections
dc.subjectGalton–Watson trees
dc.subjectscaling limits
dc.subject.ddc519en
dc.titleThe CRT is the scaling limit of random dissections
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDépartement de Mathématiques et Applications (DMA) http://www.dma.ens.fr/ CNRS : UMR8553 – Ecole normale supérieure de Paris - ENS Paris;France
dc.contributor.editoruniversityotherLaboratoire de Probabilités et Modèles Aléatoires (LPMA) http://www.proba.jussieu.fr/ CNRS : UMR7599 – Université Pierre et Marie Curie [UPMC] - Paris VI – Université Paris VII - Paris Diderot;France
dc.description.abstractenWe study the graph structure of large random dissections of polygons sampled according to Boltzmann weights, which encompasses the case of uniform dissections or uniform $p$-angulations. As their number of vertices $n$ goes to infinity, we show that these random graphs, rescaled by $n^{-1/2}$, converge in the Gromov--Hausdorff sense towards a multiple of Aldous' Brownian tree when the weights decrease sufficiently fast. The scaling constant depends on the Boltzmann weights in a rather amusing and intriguing way, and is computed by making use of a Markov chain which compares the length of geodesics in dissections with the length of geodesics in their dual trees.
dc.relation.isversionofjnlnameRandom Structures & Algorithms
dc.relation.isversionofjnlvol47
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages304-327
dc.relation.isversionofdoi10.1002/rsa.20554
dc.identifier.urlsitehttps://arxiv.org/abs/1305.3534v2
dc.relation.isversionofjnlpublisherJ. Wiley
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingprintoui
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2016-09-16T14:21:23Z
hal.person.labIds*
hal.person.labIds60*
hal.person.labIds*


Fichiers attachés à cette notice

FichiersTailleFormatConsulter

Il n'y a pas de fichiers associés à cette notice.

Ce document fait partie de la (des) collection(s) suivante(s)

Afficher la notice abrégée