• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability

Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015), Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability, Mathematics and mechanics of complex systems, 3, 3, p. 211-242. 10.2140/memocs.2015.3.211

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
https://arxiv.org/abs/1305.1715v2
Date
2015
Nom de la revue
Mathematics and mechanics of complex systems
Volume
3
Numéro
3
Ville d’édition
Paris
Pages
211-242
Identifiant publication
10.2140/memocs.2015.3.211
Métadonnées
Afficher la notice complète
Auteur(s)
Dolbeault, Jean cc
Jankowiak, Gaspard cc
Markowich, Peter
Résumé (EN)
In this paper we study two models for crowd motion and herding. Each of the models is of Keller-Segel type and involves two parabolic equations, one for the evolution of the density and one for the evolution of a mean field potential. We classify all radial stationary solutions, prove multiplicity results and establish some qualitative properties of these solutions, which are characterized as critical points of an energy functional. A notion of variational stability is associated to such solutions. The dynamical stability in a neighborhood of a stationary solution is also studied in terms of the spectral properties of the linearized evolution operator. For one of the two models, we exhibit a Lyapunov functional which allows to make the link between the two notions of stability. Even in that case, for certain values of the mass parameter and all other parameters taken in an appropriate range, we find that two dynamically stable stationary solutions exist. We further discuss qualitative properties of the solutions using theoretical methods and numerical computations.
Mots-clés
herding; dynamical stability; crowd motion; continuum model; variational methods; non self-adjoint evolution operators; Lyapunov functional

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions 
    Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Existence and stability of infinite time blow-up in the Keller-Segel system 
    Davila, Juan; del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2020) Document de travail / Working paper
  • Vignette de prévisualisation
    Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis 
    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Infinite time blow-up in the Keller-Segel system: existence and stability 
    Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019) Document de travail / Working paper
  • Vignette de prévisualisation
    Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions 
    Carillo, José A.; Delgadino, Matias G.; Frank, Rupert L.; Lewin, Mathieu (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo