Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability
Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015), Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability, Mathematics and mechanics of complex systems, 3, 3, p. 211-242. 10.2140/memocs.2015.3.211
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
https://arxiv.org/abs/1305.1715v2Date
2015Nom de la revue
Mathematics and mechanics of complex systemsVolume
3Numéro
3Ville d’édition
Paris
Pages
211-242
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
In this paper we study two models for crowd motion and herding. Each of the models is of Keller-Segel type and involves two parabolic equations, one for the evolution of the density and one for the evolution of a mean field potential. We classify all radial stationary solutions, prove multiplicity results and establish some qualitative properties of these solutions, which are characterized as critical points of an energy functional. A notion of variational stability is associated to such solutions. The dynamical stability in a neighborhood of a stationary solution is also studied in terms of the spectral properties of the linearized evolution operator. For one of the two models, we exhibit a Lyapunov functional which allows to make the link between the two notions of stability. Even in that case, for certain values of the mass parameter and all other parameters taken in an appropriate range, we find that two dynamically stable stationary solutions exist. We further discuss qualitative properties of the solutions using theoretical methods and numerical computations.Mots-clés
herding; dynamical stability; crowd motion; continuum model; variational methods; non self-adjoint evolution operators; Lyapunov functionalPublications associées
Affichage des éléments liés par titre et auteur.
-
Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
-
Davila, Juan; del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2020) Document de travail / Working paper
-
Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011) Article accepté pour publication ou publié
-
Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019) Document de travail / Working paper
-
Carillo, José A.; Delgadino, Matias G.; Frank, Rupert L.; Lewin, Mathieu (2020) Document de travail / Working paper