• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Synthesizing and Mixing Stationary Gaussian Texture Models

Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2014), Synthesizing and Mixing Stationary Gaussian Texture Models, SIAM Journal on Imaging Sciences, 7, 1, p. 476-508. http://dx.doi.org/10.1137/130918010

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00816342
Date
2014
Journal name
SIAM Journal on Imaging Sciences
Volume
7
Number
1
Publisher
SIAM
Pages
476-508
Publication identifier
http://dx.doi.org/10.1137/130918010
Metadata
Show full item record
Author(s)
Aujol, Jean-François
Peyré, Gabriel
Ferradans, Sira
Xia, Gui-Song
Abstract (EN)
This paper addresses the problem of modeling textures with Gaussian processes, focusing on color stationary textures that can be either static or dynamic. We detail two classes of Gaussian processes parameterized by a small number of compactly supported linear filters, the so-called textons. The first class extends the spot noise (SN) texture model to the dynamical setting. We estimate the space-time texton to fit a translation-invariant covariance from an input exemplar. The second class is a specialization of the auto-regressive (AR) dynamic texture method to the setting of space and time stationary textures. This allows one to parameterize the covariance with only a few spatial textons. The simplicity of these models allows us to tackle a more complex problem, texture mixing which, in our case, amounts to interpolate between Gaussian models. We use optimal transport to derive geodesic paths and barycenters between the models learned from an input data set. This allows the user to navigate inside the set of texture models and perform texture synthesis from each new interpolated model. Numerical results on a library of exemplars show the ability of our method to generate arbitrary interpolations among unstructured natural textures. Moreover, experiments on a database of stationary textures show that the methods, despite their simplicity, provide state of the art results on stationary dynamical texture synthesis and mixing.
Subjects / Keywords
optimal transport; dynamic textures; Gaussian process; texture mixing; texture synthesis; Texture analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal Transport Mixing of Gaussian Texture Models 
    Aujol, Jean-François; Peyré, Gabriel; Xia, Gui-Song; Ferradans, Sira (2012) Document de travail / Working paper
  • Thumbnail
    Compact Representations of Stationary Dynamic Textures 
    Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2012) Communication / Conférence
  • Thumbnail
    Regularized Discrete Optimal Transport 
    Ferradans, Sira; Papadakis, Nicolas; Peyré, Gabriel; Aujol, Jean-François (2014) Article accepté pour publication ou publié
  • Thumbnail
    Regularized Discrete Optimal Transport 
    Ferradans, Sira; Papadakis, Nicolas; Rabin, Julien; Peyré, Gabriel; Aujol, Jean-François (2013) Communication / Conférence
  • Thumbnail
    Extraction de textures localement parallèles par un espace de Hilbert adapté 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2009-09) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo