Macroscopic models of collective motion and self-organization
dc.contributor.author | Navoret, Laurent | |
dc.contributor.author | Motsch, Sébastien | |
dc.contributor.author | Liu, Jian-Guo | |
dc.contributor.author | Frouvelle, Amic
HAL ID: 874 ORCID: 0000-0001-6828-8176 | |
dc.contributor.author | Degond, Pierre
HAL ID: 748885 | |
dc.date.accessioned | 2013-04-23T12:19:18Z | |
dc.date.available | 2013-04-23T12:19:18Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/11238 | |
dc.language.iso | en | en |
dc.subject | self - organized hydrodynamics | en |
dc.subject | von Mises-Fisher distribution | en |
dc.subject | macroscopic limit | en |
dc.subject | Fokker - Planck equation | en |
dc.subject | mean-field kinetic model | en |
dc.subject | Vicsek model | en |
dc.subject | self-alignment | en |
dc.subject | self-propelled particles | en |
dc.subject | Individual-Based Models | en |
dc.subject.ddc | 520 | en |
dc.title | Macroscopic models of collective motion and self-organization | en |
dc.type | Rapport | |
dc.contributor.editoruniversityother | Institut de Recherche Mathématique Avancée (IRMA) http://www-irma.u-strasbg.fr/ CNRS : UMR7501 – Université de Strasbourg;France | |
dc.contributor.editoruniversityother | Center for Scientific Computation and Mathematical Modeling (CSCAMM) University of Maryland at College Park University of Maryland, College Park, MD 20742;États-Unis | |
dc.contributor.editoruniversityother | Duke Physics http://www.phy.duke.edu/ Duke University Dept. of Physics, Physics Bldg., Science Dr., Box 90305, Duke University, Durham, NC 27708;États-Unis | |
dc.contributor.editoruniversityother | Institut de Mathématiques de Toulouse (IMT) Université Paul Sabatier - Toulouse III – Université Toulouse le Mirail - Toulouse II – Université des Sciences Sociales - Toulouse I – Institut National des Sciences Appliquées (INSA) - Toulouse – CNRS : UMR5219;France | |
dc.description.abstracten | In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view of its possible extensions to other kinds of collective motion. | en |
dc.identifier.citationpages | 27 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00816752 | en |
dc.subject.ddclabel | Sciences connexes (physique, astrophysique) | en |
dc.description.submitted | non | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |