Singular perturbation of optimal control problems on multi-domains
Rao, Zhiping; Forcadel, Nicolas (2014), Singular perturbation of optimal control problems on multi-domains, SIAM Journal on Control and Optimization, 52, 5, p. 2917–2943. http://dx.doi.org/10.1137/130916709
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00812846Date
2014Journal name
SIAM Journal on Control and OptimizationVolume
52Number
5Publisher
SIAM
Pages
2917–2943
Publication identifier
Metadata
Show full item recordAbstract (EN)
The goal of this paper is to study a singular perturbation problem in the framework of optimal control on multi-domains. We consider an optimal control problem in which the controlled system contains a fast and a slow variables. This problem is reformulated as an Hamilton-Jacobi-Bellman (HJB) equation. The main difficulty comes from the fact that the fast variable lives in a multi-domain. The geometric singularity of the multi-domains leads to the discontinuity of the Hamiltonian. Under a controllability assumption on the fast variables, the limit equation (as the velocity of the fast variable goes to infinity) is obtained via a PDE approache and by means of the tools of the control theory.Subjects / Keywords
multi-domains; essential Hamiltonians; Hamilton-Jacobi-Bellman equations; optimal control; singular perturbationsRelated items
Showing items related by title and author.
-
Zidani, Hasnaa; Rao, Zhiping; Forcadel, Nicolas (2013) Article accepté pour publication ou publié
-
Forcadel, Nicolas; Rao, Zhiping; Zidani, Hasnaa (2011) Communication / Conférence
-
Zidani, Hasnaa; Forcadel, Nicolas; Bokanowski, Olivier (2011) Article accepté pour publication ou publié
-
Bensoussan, Alain (1987) Chapitre d'ouvrage
-
Sanchez-Palencia, Evariste; Meunier, Nicolas (2006) Article accepté pour publication ou publié