• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics

Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo (2015), Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Archive for Rational Mechanics and Analysis, 216, 1, p. 63-115. http://dx.doi.org/10.1007/s00205-014-0800-7

Type
Article accepté pour publication ou publié
Date
2015
Journal name
Archive for Rational Mechanics and Analysis
Volume
216
Number
1
Publisher
Springer
Pages
63-115
Publication identifier
http://dx.doi.org/10.1007/s00205-014-0800-7
Metadata
Show full item record
Author(s)
Degond, Pierre
Frouvelle, Amic cc
Liu, Jian-Guo
Abstract (EN)
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
Subjects / Keywords
von Mises-Fisher distribution

Related items

Showing items related by title and author.

  • Thumbnail
    A note on phase transitions for the Smoluchowski equation with dipolar potential 
    Liu, Jian-Guo; Frouvelle, Amic; Degond, Pierre (2012) Communication / Conférence
  • Thumbnail
    Macroscopic models of collective motion and self-organization 
    Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo; Motsch, Sébastien; Navoret, Laurent (2013) Article accepté pour publication ou publié
  • Thumbnail
    Macroscopic models of collective motion and self-organization 
    Navoret, Laurent; Motsch, Sébastien; Liu, Jian-Guo; Frouvelle, Amic; Degond, Pierre (2013) Rapport
  • Thumbnail
    From kinetic to fluid models of liquid crystals by the moment method 
    Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo (2021) Document de travail / Working paper
  • Thumbnail
    Long-time dynamics for a simple aggregation equation on the sphere 
    Frouvelle, Amic; Liu, Jian-Guo (2019) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo