Dimensional contraction via Markov transportation distance
Guillin, Arnaud; Gentil, Ivan; Bolley, François (2014), Dimensional contraction via Markov transportation distance, Journal of The London Mathematical Society, 90, 1, p. 309-332. http://dx.doi.org/10.1112/jlms/jdu027
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00808717Date
2014Journal name
Journal of The London Mathematical SocietyVolume
90Number
1Publisher
Oxford University Press
Pages
309-332
Publication identifier
Metadata
Show full item recordAbstract (EN)
It is now well known that curvature conditions {\it á la} Bakry-Émery are equivalent to contraction properties of the heat semigroup with respect to the Wasserstein distance. However, this curvature condition may include a dimensional correction which up to now had not induced any strenghtening of this contraction. We first consider the simplest example of the Euclidean heat semigroup, and prove that indeed it is so. To consider the case of a general Markov semigroup, we introduce a new distance between probability measures, based on the semigroup and its carré du champ, and adapted to them. We prove that this Markov transportation distance satisfies the same properties as the Wasserstein distance in the specific case of the Euclidean heat semigroup, namely dimensional contraction properties and Evolutional variational inequalities.Subjects / Keywords
Curvature-dimension bounds; Markov semigroups; Wasserstein distance; Diffusion equationsRelated items
Showing items related by title and author.
-
Guillin, Arnaud; Gentil, Ivan; Bolley, François (2012) Article accepté pour publication ou publié
-
Guillin, Arnaud; Gentil, Ivan; Bolley, François (2013) Article accepté pour publication ou publié
-
Gentil, Ivan; Guillin, Arnaud; Miclo, Laurent (2005) Article accepté pour publication ou publié
-
Cattiaux, Patrick; Gentil, Ivan; Guillin, Arnaud (2007-01) Article accepté pour publication ou publié
-
Dolbeault, Jean; Gentil, Ivan; Guillin, Arnaud; Wang, Feng-Yu (2008) Article accepté pour publication ou publié