Show simple item record

dc.contributor.authorTurinici, Gabriel
HAL ID: 16
ORCID: 0000-0003-2713-006X
dc.contributor.authorPatera, Anthony T.
dc.contributor.authorMaday, Yvon
dc.date.accessioned2013-03-16T09:26:40Z
dc.date.available2013-03-16T09:26:40Z
dc.date.issued2002
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/11135
dc.language.isoenen
dc.subjectexponential convergenceen
dc.subjectinterpolation methodsen
dc.subjectreduced basis methoden
dc.subject.ddc515en
dc.titleA priori Convergence Theory for Reduced-Basis Approximations of Single-Parametric Elliptic Partial Differential Equationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider “Lagrangian” reduced-basis methods for single-parameter symmetric coercive elliptic partial differential equations. We show that, for a logarithmic-(quasi-)uniform distribution of sample points, the reduced–basis approximation converges exponentially to the exact solution uniformly in parameter space. Furthermore, the convergence rate depends only weakly on the continuity-coercivity ratio of the operator: thus very low-dimensional approximations yield accurate solutions even for very wide parametric ranges. Numerical tests (reported elsewhere) corroborate the theoretical predictions.en
dc.relation.isversionofjnlnameJournal of Scientific Computing
dc.relation.isversionofjnlvol17en
dc.relation.isversionofjnlissue1-4en
dc.relation.isversionofjnldate2002
dc.relation.isversionofjnlpages437-446en
dc.relation.isversionofdoihttp://dx.doi.org/10.1023/A:1015145924517en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record