• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Constrained Sparse Texture Synthesis

Tartavel, Guillaume; Gousseau, Yann; Peyré, Gabriel (2013), Constrained Sparse Texture Synthesis, in Arjan Kuijper; Kristian Bredies; Thomas Pock; Horst Bischof, Scale Space and Variational Methods in Computer Vision 4th International Conference, SSVM 2013, Schloss Seggau, Leibnitz, Austria, June 2-6, 2013. Proceedings, Springer : Berlin Heidelberg, p. 186-197. 10.1007/978-3-642-38267-3_16

View/Open
SparseSynthesis.pdf (2.151Mb)
Type
Communication / Conférence
Date
2013
Conference country
AUSTRIA
Book title
Scale Space and Variational Methods in Computer Vision 4th International Conference, SSVM 2013, Schloss Seggau, Leibnitz, Austria, June 2-6, 2013. Proceedings
Book author
Arjan Kuijper; Kristian Bredies; Thomas Pock; Horst Bischof
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-642-3826
Pages
186-197
Publication identifier
10.1007/978-3-642-38267-3_16
Metadata
Show full item record
Author(s)
Tartavel, Guillaume

Gousseau, Yann

Peyré, Gabriel
Abstract (EN)
This paper presents a novel texture synthesis algorithm that performs a sparse expansion of the patches of the image in a dictionary learned from an input exemplar. The synthesized texture is computed through the minimization of a non-convex energy that takes into account several constraints. Our first contribution is the computation of a sparse expansion of the patches imposing that the dictionary atoms are used in the same proportions as in the exemplar. This is crucial to enable a fair representation of the features of the input image during the synthesis process. Our second contribution is the use of additional penalty terms in the variational formulation to maintain the histogram and the low frequency content of the input. Lastly we introduce a non-linear re construction process that stitches together patches without introducing blur. Numerical results illustrate the importance of each of these contributions to achieve state of the art texture synthesis.
Subjects / Keywords
sparse decomposition; texture synthesis; variational methods; dictionary learning

Related items

Showing items related by title and author.

  • Thumbnail
    Variational Texture Synthesis with Sparsity and Spectrum Constraints 
    Tartavel, Guillaume; Gousseau, Yann; Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    Wasserstein Loss for Image Synthesis and Restoration 
    Tartavel, Guillaume; Peyré, Gabriel; Gousseau, Yann (2016) Article accepté pour publication ou publié
  • Thumbnail
    Synthèse de texture par décomposition parcimonieuse contrainte 
    Peyré, Gabriel; Gousseau, Yann; Tartavel, Guillaume (2013) Communication / Conférence
  • Thumbnail
    Texture Synthesis and Modification with a Patch-Valued Wavelet Transform 
    Peyré, Gabriel (2007-07) Communication / Conférence
  • Thumbnail
    Dynamic Texture Synthesis with Grouplets 
    Peyré, Gabriel (2008-04) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo