• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Using Choquet integral in Machine learning: What can MCDA bring?

Bouyssou, Denis; Couceiro, Miguel; Labreuche, Christophe; Marichal, Jean-Luc; Mayag, Brice (2012), Using Choquet integral in Machine learning: What can MCDA bring?, in Marc Pirlot, Vincent Mousseau, DA2PL 2012 proceedings, Université de Mons : Mons, p. 41-47

View/Open
proceedingsDA2PL.pdf (6.704Mb)
Type
Communication / Conférence
Date
2012
Conference title
DA2PL'2012
Conference date
2012-11
Conference city
Mons
Conference country
Belgium
Book title
DA2PL 2012 proceedings
Book author
Marc Pirlot, Vincent Mousseau
Publisher
Université de Mons
Published in
Mons
Pages
41-47
Metadata
Show full item record
Author(s)
Bouyssou, Denis cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Couceiro, Miguel
Faculty of Science, Technology and Communication [Luxembourg] [FSTC]
Labreuche, Christophe
Thales Research and Technology [Palaiseau]
Marichal, Jean-Luc
Faculty of Science, Technology and Communication [Luxembourg] [FSTC]
Mayag, Brice
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper we discuss the Choquet integral model in the realm of Preference Learning, and point out advantages of learning simultaneously partial utility functions and capacities rather than sequentially, i.e., first utility functions and then capacities or vice-versa. Moreover, we present possible interpretation s of the Choquet integral model in Preference Learning based on Shapley values and interaction indices.
Subjects / Keywords
Choquet, Théorie de; Machine learning; Multiple criteria decision making

Related items

Showing items related by title and author.

  • Thumbnail
    Using Choquet integral in Machine learning: What can MCDA bring? 
    Bouyssou, Denis; Couceiro, Miguel; Labreuche, Christophe; Marichal, Jean-Luc; Mayag, Brice (2012) Communication / Conférence
  • Thumbnail
    Axiomatizations of the discrete Choquet integral and extensions 
    Marichal, Jean-Luc; Couceiro, Miguel (2011) Communication / Conférence
  • Thumbnail
    Axiomatizations of signed discrete Choquet integrals 
    Giove, Silvio; Marichal, Jean-Luc; Cardin, Marta; Couceiro, Miguel (2011) Article accepté pour publication ou publié
  • Thumbnail
    A characterization of the 2-additive Choquet integral by using a cardinal information 
    Mayag, Brice; Grabisch, Michel; Labreuche, Christophe (2009) Communication / Conférence
  • Thumbnail
    Dealing with inconsistencies in the representation of ordinal information by a 2-additive Choquet integral 
    Labreuche, Christophe; Grabisch, Michel; Mayag, Brice (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo