• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics.

Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012), Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics., Molecular Ecology Resources, 12, 5, p. 846-855. http://dx.doi.org/10.1111/j.1755-0998.2012.03153.x

Type
Article accepté pour publication ou publié
Date
2012
Journal name
Molecular Ecology Resources
Volume
12
Number
5
Publisher
Blackwell
Pages
846-855
Publication identifier
http://dx.doi.org/10.1111/j.1755-0998.2012.03153.x
Metadata
Show full item record
Author(s)
Cornuet, Jean-Marie
Robert, Christian P.
Pudlo, Pierre
Guillemaud, Thomas cc
Marin, Jean-Michel cc
Lombaert, Eric cc
Estoup, Arnaud cc
Abstract (EN)
Comparison of demo-genetic models using Approximate Bayesian Computation (ABC) is an active research field. Although large numbers of populations and models (i.e. scenarios) can be analysed with ABC using molecular data obtained from various marker types, methodological and computational issues arise when these numbers become too large. Moreover, Robert et al. (Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15112) have shown that the conclusions drawn on ABC model comparison cannot be trusted per se and required additional simulation analyses. Monte Carlo inferential techniques to empirically evaluate confidence in scenario choice are very time-consuming, however, when the numbers of summary statistics (Ss) and scenarios are large. We here describe a methodological innovation to process efficient ABC scenario probability computation using linear discriminant analysis (LDA) on Ss before computing logistic regression. We used simulated pseudo-observed data sets (pods) to assess the main features of the method (precision and computation time) in comparison with traditional probability estimation using raw (i.e. not LDA transformed) Ss. We also illustrate the method on real microsatellite data sets produced to make inferences about the invasion routes of the coccinelid Harmonia axyridis. We found that scenario probabilities computed from LDA-transformed and raw Ss were strongly correlated. Type I and II errors were similar for both methods. The faster probability computation that we observed (speed gain around a factor of 100 for LDA-transformed Ss) substantially increases the ability of ABC practitioners to analyse large numbers of pods and hence provides a manageable way to empirically evaluate the power available to discriminate among a large set of complex scenarios.
Subjects / Keywords
Genetic; Models; Population; Genetics; Genetic Markers; Computational Biology; Biostatistics; Beetles; Animals

Related items

Showing items related by title and author.

  • Thumbnail
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
  • Thumbnail
    Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation 
    Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008-04) Article accepté pour publication ou publié
  • Thumbnail
    Reliable ABC model choice via random forests 
    Pudlo, Pierre; Marin, Jean-Michel; Estoup, Arnaud; Cornuet, Jean-Marie; Gautier, Mathieu; Robert, Christian P. (2016) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive approximate Bayesian computation 
    Robert, Christian P.; Marin, Jean-Michel; Cornuet, Jean-Marie; Beaumont, Mark A. (2009) Article accepté pour publication ou publié
  • Thumbnail
    Lack of confidence in approximate Bayesian computation model choice 
    Robert, Christian P.; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S. (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo