• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

The two-dimensional Keller-Segel model after blow-up

Thumbnail
Date
2009
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00158767/en/
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Keller-Segel; chemotaxis; blow-up; aggregation; measure valued solutions; defect measure
Nom de la revue
Discrete and Continuous Dynamical Systems. Series A
Volume
25
Numéro
1
Date de publication
2009
Pages article
109-121
Nom de l'éditeur
American Institute of Mathematical Sciences
DOI
http://dx.doi.org/10.3934/dcds.2009.25.109
URI
https://basepub.dauphine.fr/handle/123456789/1099
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Schmeiser, Christian
Dolbeault, Jean
Type
Article accepté pour publication ou publié
Résumé en anglais
In the two-dimensional Keller-Segel model for chemotaxis of biological cells, blow-up of solutions in finite time occurs if the total mass is above a critical value. Blow-up is a concentration event, where point aggregates are created. In this work global existence of generalized solutions is proven, allowing for measure valued densities. This extends the solution concept after blow-up. The existence result is an application of a theory developed by Poupaud, where the cell distribution is characterized by an additional defect measure, which vanishes for smooth cell densities. The global solutions are constructed as limits of solutions of a regularized problem. A strong formulation is derived under the assumption that the generalized solution consists of a smooth part and a number of smoothly varying point aggregates. Comparison with earlier formal asymptotic results shows that the choice of a solution concept after blow-up is not unique and depends on the type of regularization. This work is also concerned with local density profiles close to point aggregates. An equation for these profiles is derived by passing to the limit in a rescaled version of the regularized model. Solvability of the profile equation can also be obtained by minimizing a free energy functional.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.