• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Blockwise SVD with error in the operator and application to blind deconvolution

Vareschi, Thomas; Picard, Dominique; Hoffmann, Marc; Delattre, Sylvain (2012), Blockwise SVD with error in the operator and application to blind deconvolution, Electronic Journal of Statistics, 6, p. 2274-2308. http://dx.doi.org/10.1214/12-EJS745

Type
Article accepté pour publication ou publié
Date
2012
Journal name
Electronic Journal of Statistics
Volume
6
Publisher
Institute of Mathematical Statistics
Pages
2274-2308
Publication identifier
http://dx.doi.org/10.1214/12-EJS745
Metadata
Show full item record
Author(s)
Vareschi, Thomas
Picard, Dominique
Hoffmann, Marc
Delattre, Sylvain
Abstract (EN)
We consider linear inverse problems in a nonparametric statistical framework. Both the signal and the operator are unknown and subject to error measurements. We establish minimax rates of convergence under squared error loss when the operator admits a blockwise singular value decomposition (blockwise SVD) and the smoothness of the signal is measured in a Sobolev sense. We construct a nonlinear procedure adapting simultaneously to the unknown smoothness of both the signal and the operator and achieving the optimal rate of convergence to within logarithmic terms. When the noise level in the operator is dominant, by taking full advantage of the blockwise SVD property, we demonstrate that the block SVD procedure outperforms classical methods based on Galerkin projection or nonlinear wavelet thresholding. We subsequently apply our abstract framework to the specific case of blind deconvolution on the torus and on the sphere.
Subjects / Keywords
error in the operator; linear in- verse problems; nonparametric adaptive estimation; circular and spherical deconvolution; blockwise SVD; Blind deconvolution

Related items

Showing items related by title and author.

  • Thumbnail
    Some limit theorems for Hawkes processes and application to financial statistics 
    Muzy, Jean-François; Delattre, Sylvain; Hoffmann, Marc; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Modelling microstructure noise with mutually exciting point processes 
    Muzy, Jean-François; Hoffmann, Marc; Delattre, Sylvain; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Individual and population approaches for calibrating division rates in population dynamics: Application to the bacterial cell cycle 
    Doumic, Marie; Hoffmann, Marc (2023) Chapitre d'ouvrage
  • Thumbnail
    Hawkes processes on large networks 
    Delattre, Sylvain; Fournier, Nicolas; Hoffmann, Marc (2016) Article accepté pour publication ou publié
  • Thumbnail
    Design and rationale of the non-interventional, edoxaban treatment in routiNe clinical prActice in patients with venous ThromboEmbolism in Europe (ETNA-VTE-Europe) study 
    Cohen, Alexander T.; Ay, Cihan; Hainaut, Philippe; Décousus, Hervé; Hoffmann, Ulrich; Gaine, Sean; Coppens, Michiel; da Silva, Pedro Marques; Jiménez, David; Amann-Vesti, Beatrice; Brüggenjürgen, Bernd; Lévy, Pierre; Bastida, Julio Lopez; Vicaut, Eric; Laeis, Petra; Fronk, Eva-Maria; Zierhut, Wolfgang; Malzer, Thomas; Bramlage, Peter; Agnelli, Giancarlo (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo