• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Modelling microstructure noise with mutually exciting point processes

Muzy, Jean-François; Hoffmann, Marc; Delattre, Sylvain; Bacry, Emmanuel (2013), Modelling microstructure noise with mutually exciting point processes, Quantitative Finance, 13, 1, p. 65-77. http://dx.doi.org/10.1080/14697688.2011.647054

View/Open
BDHM1.pdf (386.2Kb)
Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00779787
Date
2013
Journal name
Quantitative Finance
Volume
13
Number
1
Publisher
Institute of Physics Publishing
Pages
65-77
Publication identifier
http://dx.doi.org/10.1080/14697688.2011.647054
Metadata
Show full item record
Author(s)
Muzy, Jean-François
Hoffmann, Marc
Delattre, Sylvain
Bacry, Emmanuel cc
Abstract (EN)
We introduce a new stochastic model for the variations of asset prices at the tick-by-tick level in dimension 1 (for a single asset) and 2 (for a pair of assets). The construction is based on marked point pro- cesses and relies on linear self and mutually exciting stochastic inten- sities as introduced by Hawkes. We associate a counting process with the positive and negative jumps of an asset price. By coupling suitably the stochastic intensities of upward and downward changes of prices for several assets simultaneously, we can reproduce microstructure noise (i.e. strong microscopic mean reversion at the level of seconds to a few minutes) and the Epps effect (i.e. the decorrelation of the increments in microscopic scales) while preserving a standard Brownian diffusion behaviour on large scales. More effectively, we obtain analytical closed-form formulae for the mean signature plot and the correlation of two price increments that enable to track across scales the effect of the mean-reversion up to the diffusive limit of the model. We show that the theoretical results are consistent with empirical fits on futures Euro-Bund and Euro-Bobl in several situations.
Subjects / Keywords
Epps effect; Signature plot; Bartlett spectrum; Hawkes processes; Point processes; Microstructure noise

Related items

Showing items related by title and author.

  • Thumbnail
    Some limit theorems for Hawkes processes and application to financial statistics 
    Muzy, Jean-François; Delattre, Sylvain; Hoffmann, Marc; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Sparse and low-rank multivariate Hawkes processes 
    Bacry, Emmanuel; Bompaire, Martin; Gaïffas, Stéphane; Muzy, Jean-François (2020) Article accepté pour publication ou publié
  • Thumbnail
    Concentration inequalities for matrix martingales in continuous time 
    Bacry, Emmanuel; Muzy, Jean-François; Gaïffas, Stéphane (2018) Article accepté pour publication ou publié
  • Thumbnail
    Queue-reactive Hawkes models for the order flow 
    Wu, Peng; Rambaldi, Marcello; Muzy, Jean-François; Bacry, Emmanuel (2019) Document de travail / Working paper
  • Thumbnail
    Uncovering Causality from Multivariate Hawkes Integrated Cumulants 
    Achab, Massil; Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo