• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Adaptive wavelet estimation of the diffusion coefficient under additive error measurements

Johannes, Schmidt-Hieber; Munk, Axel; Hoffmann, Marc (2012), Adaptive wavelet estimation of the diffusion coefficient under additive error measurements, Annales de l'I.H.P. Probabilités et Statistiques, 48, 4, p. 1186-1216. http://dx.doi.org/10.1214/11-AIHP472

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00779763
Date
2012
Journal name
Annales de l'I.H.P. Probabilités et Statistiques
Volume
48
Number
4
Publisher
Institut Henri Poincaré
Pages
1186-1216
Publication identifier
http://dx.doi.org/10.1214/11-AIHP472
Metadata
Show full item record
Author(s)
Johannes, Schmidt-Hieber
Munk, Axel
Hoffmann, Marc
Abstract (EN)
We study nonparametric estimation of the diffusion coefficient from discrete data, when the observations are blurred by additional noise. Such issues have been developed over the last 10 years in several application fields and in particular in high frequency financial data modelling, however mainly from a parametric and semiparametric point of view. This paper addresses the nonparametric estimation of the path of the (possibly stochastic) diffusion coefficient in a relatively general setting. By developing pre-averaging techniques combined with wavelet thresholding, we construct adaptive estimators that achieve a nearly optimal rate within a large scale of smoothness constraints of Besov type. Since the diffusion coefficient is usually genuinely random, we propose a new criterion to assess the quality of estimation; we retrieve the usual minimax theory when this approach is restricted to a deterministic diffusion coefficient. In particular, we take advantage of recent results of Reiß (Ann. Statist. 39 (2011) 772-802) of asymptotic equivalence between a Gaussian diffusion with additive noise and Gaussian white noise model, in order to prove a sharp lower bound.
Subjects / Keywords
Wavelet estimation; Nonparametric regression; Diffusion processes; Besov spaces; Adaptive estimation

Related items

Showing items related by title and author.

  • Thumbnail
    On adaptive posterior concentration rates 
    Hoffmann, Marc; Rousseau, Judith; Schmidt-Hieber, Johannes (2015) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of the Diffusion Coefficient from Crossings 
    Florens, Danielle (1999) Article accepté pour publication ou publié
  • Thumbnail
    Nonparametric estimation of the division rate of a size-structured population 
    Doumic, Marie; Hoffmann, Marc; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2012) Article accepté pour publication ou publié
  • Thumbnail
    Nonparametric estimation of the division rate of an age dependent branching process 
    Hoffmann, Marc; Olivier, Adélaïde (2016) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive estimation for bifurcating Markov chains 
    Hoffmann, Marc; Olivier, Adélaïde; Valère Bitseki Penda, Siméon (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo