Show simple item record

dc.contributor.authorGarban, Christophe*
dc.contributor.authorRhodes, Rémi*
dc.contributor.authorVargas, Vincent*
dc.date.accessioned2013-01-16T14:10:25Z
dc.date.available2013-01-16T14:10:25Z
dc.date.issued2016
dc.identifier.issn0091-1798
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/10847
dc.language.isoenen
dc.subjectLiouville quantum gravity
dc.subjectRandom measures
dc.subjectLiouville Brownian motion
dc.subjectmultiplicative chaos
dc.subject.ddc519en
dc.titleLiouville Brownian motion
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUnité de Mathématiques Pures et Appliquées (UMPA-ENSL) http://www.umpa.ens-lyon.fr/ CNRS : UMR5669 – École Normale Supérieure - Lyon;France
dc.description.abstractenWe construct a stochastic process, called the Liouville Brownian motion which we conjecture to be the scaling limit of random walks on large planar maps which are embedded in the euclidean plane or in the sphere in a conformal manner. Our construction works for all universality classes of planar maps satisfying $\gamma <\gamma_c=2$. In particular, this includes the interesting case of $\gamma=\sqrt{8/3}$ which corresponds to the conjectured scaling limit of large uniform planar $p$-angulations (with fixed $p\geq 3$). We start by constructing our process from some fixed point $x\in \R^2$ (or $x\in \S^2$). This amounts to changing the speed of a standard two-dimensional brownian motion $B_t$ depending on the local behaviour of the Liouville measure ''$M_\gamma(dz) = e^{\gamma X} dz$'' (where $X$ is a Gaussien Free Field, say on $\S^2$). A significant part of the paper focuses on extending this construction simultaneously to all points $x\in \R^2$ or $\S^2$ in such a way that one obtains a semi-group $P_\t$ (the Liouville semi-group). We prove that the associated Markov process is a Feller diffusion for all $\gamma<\gamma_c=2$ and that for $\gamma<\sqrt{2}$, the Liouville measure $M_\gamma$ is invariant under $P_\t$ (which in some sense shows that it is the right quantum gravity diffusion to consider). This Liouville Brownian motion enables us to give sense to part of the celebrated Feynman path integrals which are at the root of Liouville quantum gravity, the Liouville Brownian ones. Finally we believe that this work sheds some new light on the difficult problem of constructing a quantum metric out of the exponential of a Gaussian Free Field (see conjecture \ref{c.metric}).
dc.relation.isversionofjnlnameAnnals of Probability
dc.relation.isversionofjnlvol44
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2016
dc.relation.isversionofjnlpages3076-3110
dc.relation.isversionofdoi10.1214/15-AOP1042
dc.identifier.urlsitehttps://arxiv.org/abs/1301.2876v4
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statistics
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2018-07-23T13:17:16Z
hal.person.labIds*
hal.person.labIds*
hal.person.labIds*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record