Show simple item record

dc.contributor.authorLaptev, Ari
dc.contributor.authorEsteban, Maria J.
dc.contributor.authorDolbeault, Jean
dc.date.accessioned2013-01-12T10:17:41Z
dc.date.available2013-01-12T10:17:41Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/10824
dc.language.isoenen
dc.subjectone bound state Keller-Lieb-Thirring inequalityen
dc.subjectground stateen
dc.subjectSchrödinger operatoren
dc.subjectlogarithmic Sobolev inequalityen
dc.subjectGagliardo-Nirenberg-Sobolev inequalitiesen
dc.subjectinterpolationen
dc.subjectSobolev inequalityen
dc.subjectEstimation of eigenvaluesen
dc.subjectQuantum theoryen
dc.subjectPartial differential operators on manifoldsen
dc.subjectSpectral problemsen
dc.subject.ddc515en
dc.titleSpectral estimates on the sphereen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDepartment of Mathematics - Imperial College London http://www.ma.ic.ac.uk Imperial College London;Royaume-Uni
dc.description.abstractenIn this article we establish optimal estimates for the first eigenvalue of Schrödinger operators on the d-dimensional unit sphere. These estimates depend on Lebsgue's norms of the potential, or of its inverse, and are equivalent to interpolation inequalities on the sphere. We also characterize a semi-classical asymptotic regime and discuss how our estimates on the sphere differ from those on the Euclidean space.en
dc.relation.isversionofjnlnameAnalysis & PDE
dc.relation.isversionofjnlvol7
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnlpages435-460
dc.relation.isversionofdoihttp://dx.doi.org/10.2140/apde.2014.7.435
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00770755en
dc.relation.isversionofjnlpublisherMathematical Sciences Publishers
dc.subject.ddclabelAnalyseen
dc.description.submittednonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record