Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules
Carrapatoso, Kleber (2016), Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules, Kinetic & Related Models, 49, 1, p. 1-49. 10.3934/krm.2016.9.1
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-00765621Date
2016Journal name
Kinetic & Related ModelsVolume
49Number
1Publisher
AIMS - American Institute of Mathematical Sciences
Published in
Paris
Pages
1-49
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove a quantitative propagation of chaos and entropic chaos, uniformly in time, for the spatially homogeneous Landau equation in the case of Maxwellian molecules. We improve the results of Fontbona, Guérin and Méléard [9] and Fournier [10] where the propagation of chaos is proved for finite time. Moreover, we prove a quantitative estimate on the rate of convergence to equilibrium uniformly in the number of particles.Subjects / Keywords
Chaos; entropic chaos; grazing collisions; Landau equation; maxwellian molecules; Boltzmann equationRelated items
Showing items related by title and author.
-
Carrapatoso, Kleber (2015) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Tristani, Isabelle; Wu, Kung-Chien (2016) Article accepté pour publication ou publié
-
Carrapatoso, Kleber (2013-12) Thèse
-
Carrapatoso, Kleber; Mischler, Stéphane (2017) Article accepté pour publication ou publié
-
Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié