• français
    • English
  • français 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules

Thumbnail
Date
2016
Publisher city
Paris
Link to item file
https://hal.archives-ouvertes.fr/hal-00765621
Dewey
Probabilités et mathématiques appliquées
Sujet
Chaos; entropic chaos; grazing collisions; Landau equation; maxwellian molecules; Boltzmann equation
Journal issue
Kinetic & Related Models
Volume
49
Number
1
Publication date
2016
Article pages
1-49
Publisher
AIMS - American Institute of Mathematical Sciences
DOI
http://dx.doi.org/10.3934/krm.2016.9.1
URI
https://basepub.dauphine.fr/handle/123456789/10749
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Carrapatoso, Kleber
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Type
Article accepté pour publication ou publié
Abstract (EN)
We prove a quantitative propagation of chaos and entropic chaos, uniformly in time, for the spatially homogeneous Landau equation in the case of Maxwellian molecules. We improve the results of Fontbona, Guérin and Méléard [9] and Fournier [10] where the propagation of chaos is proved for finite time. Moreover, we prove a quantitative estimate on the rate of convergence to equilibrium uniformly in the number of particles.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.