Local vs global descriptors of hippocampus shape evolution for Alzheimer's longitudinal population analysis
Fiot, Jean-Baptiste; Risser, Laurent; Cohen, Laurent D.; Fripp, Jürgen; Vialard, François-Xavier (2012), Local vs global descriptors of hippocampus shape evolution for Alzheimer's longitudinal population analysis, in Stanley Durrleman, Tom Fletcher, Guido Gerig, Mars Niethammer, Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data Second International Workshop, STIA 2012, Held in Conjunction with MICCAI 2012, Nice, France, October 1, 2012. Proceedings, Springer : Berlin Heidelberg, p. 13-24. 10.1007/978-3-642-33555-6_2
Type
Communication / ConférenceExternal document link
https://hal.archives-ouvertes.fr/hal-00764163Date
2012Conference country
FRANCEBook title
Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data Second International Workshop, STIA 2012, Held in Conjunction with MICCAI 2012, Nice, France, October 1, 2012. Proceedings; STIA 2012 - MICCAI 2012Book author
Stanley Durrleman, Tom Fletcher, Guido Gerig, Mars NiethammerPublisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-642-33554-9
Pages
13-24
Publication identifier
Metadata
Show full item recordAuthor(s)
Fiot, Jean-BaptisteCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Risser, Laurent
Cohen, Laurent D.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Fripp, Jürgen
CSIRO Information and Commuciation Technologies [CSIRO ICT Centre]
Vialard, François-Xavier
Abstract (EN)
In the context of Alzheimer's disease (AD), state-of-the-art methods separating normal control (NC) from AD patients or CN from progressive MCI (mild cognitive impairment patients converting to AD) achieve decent classification rates. However, they all perform poorly at separating stable MCI (MCI patients not converting to AD) and progressive MCI. Instead of using features extracted from a single temporal point, we address this problem using descriptors of the hippocampus evolutions between two time points. To encode the transformation, we use the framework of large deformations by diffeomorphisms that provides geodesic evolutions. To perform statistics on those local features in a common coordinate system, we introduce an extension of the K\"{a}rcher mean algorithm that defines the template modulo rigid registrations, and an initialization criterion that provides a final template leading to better matching with the patients. Finally, as local descriptors transported to this template do not directly perform as well as global descriptors (e.g. volume difference), we propose a novel strategy combining the use of initial momentum from geodesic shooting, extended K\"{a}rcher algorithm, density transport and integration on a hippocampus subregion, which is able to outperform global descriptors.Subjects / Keywords
Brain imaging; population analysis; geodesic shooting; Alzheimer’s disease; time-series image data; Kärcher meanRelated items
Showing items related by title and author.
-
Cohen, Laurent D.; Fiot, Jean-Baptiste; Fripp, Jürgen; Raguet, Hugo; Risser, Laurent; Vialard, François-Xavier (2014) Article accepté pour publication ou publié
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Bourgeat, Pierrick; Raniga, Parnesh; Acosta, Oscar; Villemagne, Victor; Salvado, Olivier; Fripp, Jürgen (2012) Communication / Conférence
-
Fiot, Jean-Baptiste; Fripp, Jürgen; Cohen, Laurent D. (2012) Communication / Conférence
-
Fiot, Jean-Baptiste (2013-09) Thèse
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2012) Communication / Conférence