• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Adaptive Multiple Importance Sampling

Robert, Christian P.; Mira, Antonietta; Marin, Jean-Michel; Cornuet, Jean-Marie (2012), Adaptive Multiple Importance Sampling, Scandinavian Journal of Statistics, 39, 4, p. 798-812. http://dx.doi.org/10.1111/j.1467-9469.2011.00756.x

Type
Article accepté pour publication ou publié
Date
2012
Journal name
Scandinavian Journal of Statistics
Volume
39
Number
4
Publisher
Blackwell
Pages
798-812
Publication identifier
http://dx.doi.org/10.1111/j.1467-9469.2011.00756.x
Metadata
Show full item record
Author(s)
Robert, Christian P.
Mira, Antonietta
Marin, Jean-Michel cc
Cornuet, Jean-Marie
Abstract (EN)
. The Adaptive Multiple Importance Sampling algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling (IS) scheme. The difference with earlier adaptive IS implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of the deterministic multiple mixture estimator of Owen & Zhou ( J. Amer. Statist. Assoc., 95, 2000, 135). Although the convergence properties of the algorithm cannot be investigated, we demonstrate through a challenging banana shape target distribution and a population genetics example that the improvement brought by this technique is substantial. [ABSTRACT FROM AUTHOR]
Subjects / Keywords
sequential Monte Carlo; population Monte Carlo; population genetics; particle filters; deterministic mixture weights; banana shape target
JEL
C15 - Statistical Simulation Methods: General

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive approximate Bayesian computation 
    Robert, Christian P.; Marin, Jean-Michel; Cornuet, Jean-Marie; Beaumont, Mark A. (2009) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive Importance Sampling in General Mixture Classes 
    Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of adaptive mixtures of importance sampling schemes 
    Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2007) Article accepté pour publication ou publié
  • Thumbnail
    Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation 
    Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008-04) Article accepté pour publication ou publié
  • Thumbnail
    Reliable ABC model choice via random forests 
    Pudlo, Pierre; Marin, Jean-Michel; Estoup, Arnaud; Cornuet, Jean-Marie; Gautier, Mathieu; Robert, Christian P. (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo