• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Dual Norm Based Iterative Methods for Image Restoration

Jung, Miyoun; Resmerita, Elena; Vase, Luminita A. (2012), Dual Norm Based Iterative Methods for Image Restoration, Journal of Mathematical Imaging and Vision, 44, 2, p. 128-149. http://dx.doi.org/10.1007/s10851-011-0318-7

View/Open
cam09-88.pdf (3.675Mb)
Type
Article accepté pour publication ou publié
Date
2012
Journal name
Journal of Mathematical Imaging and Vision
Volume
44
Number
2
Publisher
Springer
Pages
128-149
Publication identifier
http://dx.doi.org/10.1007/s10851-011-0318-7
Metadata
Show full item record
Author(s)
Jung, Miyoun
Resmerita, Elena
Vase, Luminita A.
Abstract (EN)
A convergent iterative regularization procedure based on the square of a dual norm is introduced for image restoration models with general (quadratic or non-quadratic) convex fidelity terms. Iterative regularization methods have been previously employed for image deblurring or denoising in the presence of Gaussian noise, which use L 2 (Tadmor et al. in Multiscale Model. Simul. 2:554–579, 2004; Osher et al. in Multiscale Model. Simul. 4:460–489, 2005; Tadmor et al. in Commun. Math. Sci. 6(2):281–307, 2008), and L 1 (He et al. in J. Math. Imaging Vis. 26:167–184, 2005) data fidelity terms, with rigorous convergence results. Recently, Iusem and Resmerita (Set-Valued Var. Anal. 18(1):109–120, 2010) proposed a proximal point method using inexact Bregman distance for minimizing a convex function defined on a non-reflexive Banach space (e.g. BV(Ω)), which is the dual of a separable Banach space. Based on this method, we investigate several approaches for image restoration such as image deblurring in the presence of noise or image deblurring via (cartoon+texture) decomposition. We show that the resulting proximal point algorithms approximate stably a true image. For image denoising-deblurring we consider Gaussian, Laplace, and Poisson noise models with the corresponding convex fidelity terms as in the Bayesian approach. We test the behavior of proposed algorithms on synthetic and real images in several numerical experiments and compare the results with other state-of-the-art iterative procedures based on the total variation penalization as well as the corresponding existing one-step gradient descent implementations. The numerical experiments indicate that the iterative procedure yields high quality reconstructions and superior results to those obtained by one-step standard gradient descent, with faster computational time.
Subjects / Keywords
Proximal point method; Iterative regularization; Inexact Bregman distance; Inverse problem; Image restoration; Bounded variation

Related items

Showing items related by title and author.

  • Thumbnail
    Nonlocal Mumford-Shah Regularizers for Color Image Restoration 
    Jung, Miyoun; Bresson, Xavier; Chan, Tony F.; Vese, Luminita A. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Variational multiframe restoration of images degraded by noisy (stochastic) blur kernels 
    Jung, Miyoun; Marquina, Antonio; Vese, Luminita A. (2013) Article accepté pour publication ou publié
  • Thumbnail
    Méthodes variationnelles pour la segmentation d'images à partir de modèles : applications en imagerie médicale 
    Prevost, Raphaël (2013-10) Thèse
  • Thumbnail
    A l1-unified variational framework for image restoration 
    Bect, Julien; Blanc-Féraud, Laure; Aubert, Gilles; Chambolle, Antonin (2004) Communication / Conférence
  • Thumbnail
    Wasserstein Loss for Image Synthesis and Restoration 
    Tartavel, Guillaume; Peyré, Gabriel; Gousseau, Yann (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo