• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On "Arnold's theorem" on the stability of the solar system

Féjoz, Jacques (2013), On "Arnold's theorem" on the stability of the solar system, Discrete and Continuous Dynamical Systems. Series A, 33, 8, p. 3555-3565. http://dx.doi.org/10.3934/dcds.2013.33.3555

View/Open
arnoldsTheorem.pdf (132.7Kb)
Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00741551
Date
2013
Journal name
Discrete and Continuous Dynamical Systems. Series A
Volume
33
Number
8
Publisher
American Institute of Mathematical Sciences
Pages
3555-3565
Publication identifier
http://dx.doi.org/10.3934/dcds.2013.33.3555
Metadata
Show full item record
Author(s)
Féjoz, Jacques
Abstract (EN)
Arnold's theorem on the planetary problem states that, assuming that the masses of n planets are small enough, there exists in the phase space a set of initial conditions of positive Lebesgue measure, leading to quasiperiodic motions with 3n−1 frequencies. Arnold's initial proof is complete only for the plane 2-planet problem. Arnold had missed a resonance later discovered by Herman. The first complete proof, by Herman-Féjoz, relies on the weak non-degeneracy condition of Arnold-Pyartli. A second proof, by Chierchia-Pinzari, is closer to Arnold's initial idea and shows the strong non-degeneracy of the problem after suitable reduction by (part of) the symmetry of rotation. We review and compare these proofs. In an appendix, we define the Poincaré coordinates and prove their symplectic nature through the shortest possible computation.
Subjects / Keywords
non-degeneracy; Herman's resonance; resonance; solar system; KAM; stability

Related items

Showing items related by title and author.

  • Thumbnail
    A proof of the invariant torus theorem of Kolmogorov 
    Féjoz, Jacques (2012) Article accepté pour publication ou publié
  • Thumbnail
    A simple proof of the invariant torus theorem 
    Féjoz, Jacques (2010) Document de travail / Working paper
  • Thumbnail
    Démonstration du ‘théorème d'Arnold’ sur la stabilité du système planétaire (d'après Herman) 
    Féjoz, Jacques (2004) Article accepté pour publication ou publié
  • Thumbnail
    About M. Herman's proof of 'Arnold's Theorem' in celestial mechanics 
    Féjoz, Jacques (2005) Communication / Conférence
  • Thumbnail
    Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle 
    Catto, Isabelle; Dolbeault, Jean; Sánchez, Óscar; Soler, Juan (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo