• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

On the arity gap of finite functions: results and applications

Thumbnail
Ouvrir
ROGICS08-CL.pdf (170.4Kb)
Date
2016
Indexation documentaire
Algèbre
Subject
variable substitution; Boolean function; essential variable; arity gap; Finite function
Nom de la revue
Journal of Multiple-Valued Logic and Soft Computing
Volume
27
Numéro
2-3
Date de publication
2016
Pages article
193-207
Nom de l'éditeur
OCP Science
A paraître
oui
URI
https://basepub.dauphine.fr/handle/123456789/10321
Collections
  • LAMSADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Couceiro, Miguel
Lehtonen, Erkko
Type
Article accepté pour publication ou publié
Résumé en anglais
Let A be a finite set and B an arbitrary set with at least two elements. The arity gap of a function f:An→B is the minimum decrease in the number of essential variables when essential variables of f are identified. A non-trivial fact is that the arity gap of such B-valued functions on A is at most |A|. Even less trivial to verify is the fact that the arity gap of B-valued functions on A with more than |A| essential variables is at most 2. These facts ask for a classification of B-valued functions on A in terms of their arity gap. In this paper, we survey what is known about this problem. We present a general characterization of the arity gap of B-valued functions on A and provide explicit classifications of the arity gap of Boolean and pseudo-Boolean functions. Moreover, we reveal unsettled questions related to this topic, and discuss links and possible applications of some results to other subjects of research.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.