Show simple item record

dc.contributor.authorCarlier, Guillaume
dc.contributor.authorBrasco, Lorenzo
dc.date.accessioned2012-09-26T13:27:40Z
dc.date.available2012-09-26T13:27:40Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/10224
dc.language.isoenen
dc.subjectregularityen
dc.subjectanisotropic and degenerate PDEsen
dc.subjecttraffic congestionen
dc.subject.ddc519en
dc.titleCongested traffic equilibria and degenerate anisotropic PDEsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenCongested traffic problems on very dense networks lead, at the limit, to minimization problems posed on measures on curves as shown in Baillon and Carlier (Netw. Heterogenous Media 7: 219--241, 2012). Here, we go one step further by showing that these problems can be reformulated in terms of the minimization of an integral functional over a set of vector fields with prescribed divergence. We prove a Sobolev regularity result for their minimizers despite the fact that the Euler-Lagrange equation of the dual is highly degenerate and anisotropic. This somehow extends the analysis of Brasco et al. (J. Math. Pures Appl. 93: 652--671, 2010) to the anisotropic case.en
dc.relation.isversionofjnlnameDynamic Games and Applications
dc.relation.isversionofjnlvol3
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages508-522
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s13235-013-0081-z
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00734555
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record