• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Generalizations of Swierczkowski’s lemma and the arity gap of finite functions

Lehtonen, Erkko; Couceiro, Miguel (2009), Generalizations of Swierczkowski’s lemma and the arity gap of finite functions, Discrete Mathematics, 309, 20, p. 5905-5912. http://dx.doi.org/10.1016/j.disc.2009.04.009

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/0712.1753
Date
2009
Journal name
Discrete Mathematics
Volume
309
Number
20
Publisher
Elsevier
Pages
5905-5912
Publication identifier
http://dx.doi.org/10.1016/j.disc.2009.04.009
Metadata
Show full item record
Author(s)
Lehtonen, Erkko cc
Couceiro, Miguel
Abstract (EN)
Świerczkowski’s lemma–as it is usually formulated–asserts that if f:An→A is an operation on a finite set A, n≥4, and every operation obtained from f by identifying a pair of variables is a projection, then f is a semiprojection. We generalize this lemma in various ways. First, it is extended to B-valued functions on A instead of operations on A and to essentially at most unary functions instead of projections. Then we characterize the arity gap of functions of small arities in terms of quasi-arity, which in turn provides a further generalization of Świerczkowski’s lemma. Moreover, we explicitly classify all pseudo-Boolean functions according to their arity gap. Finally, we present a general characterization of the arity gaps of B-valued functions on arbitrary finite sets A.
Subjects / Keywords
Semiprojection; Arity gap; Essential variables; Variable identification minors; Variable substitution; Pseudo-Boolean functions; Boolean functions; Finite functions

Related items

Showing items related by title and author.

  • Thumbnail
    On the arity gap of finite functions: results and applications 
    Lehtonen, Erkko; Couceiro, Miguel; Couceiro, Miguel (2008) Communication / Conférence
  • Thumbnail
    On the arity gap of finite functions: results and applications 
    Couceiro, Miguel; Lehtonen, Erkko (2016) Article accepté pour publication ou publié
  • Thumbnail
    The arity gap of order-preserving functions and extensions of pseudo-Boolean functions 
    Waldhauser, Tamás; Lehtonen, Erkko; Couceiro, Miguel (2012) Article accepté pour publication ou publié
  • Thumbnail
    The arity gap of polynomial functions over bounded distributive lattices 
    Lehtonen, Erkko; Couceiro, Miguel (2011) Communication / Conférence
  • Thumbnail
    Decompositions of functions based on arity gap 
    Waldhauser, Tamás; Lehtonen, Erkko; Couceiro, Miguel (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo