Functional equations, constraints, definability of function classes, and functions of Boolean variables
dc.contributor.author | Foldes, Stephan | |
dc.contributor.author | Couceiro, Miguel
HAL ID: 1498 | |
dc.date.accessioned | 2012-09-25T15:25:41Z | |
dc.date.available | 2012-09-25T15:25:41Z | |
dc.date.issued | 2007 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/10178 | |
dc.language.iso | en | en |
dc.subject | pseudo-Boolean functions | en |
dc.subject | Boolean functions | en |
dc.subject | field-valued functions of Boolean variables | en |
dc.subject | linear equations | en |
dc.subject | multilinear polynomial representations | en |
dc.subject | ring-valued functions | en |
dc.subject | function class definability | en |
dc.subject | relational constraints | en |
dc.subject | functional equa- tion | en |
dc.subject | stability | en |
dc.subject | class composition | en |
dc.subject | Function classes | en |
dc.subject.ddc | 512 | en |
dc.title | Functional equations, constraints, definability of function classes, and functions of Boolean variables | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | TUT; | |
dc.description.abstracten | The paper deals with classes of functions of several variables defined on an arbitrary set A and taking values in a possibly different set B. Definability of function classes by functional equations is shown to be equivalent to definability by relational constraints, generalizing a fact established by Pippenger in the case A = B = {0,1}. Conditions for a class of functions to be definable by constraints of a particular type are given in terms of stability under certain functional compositions. This leads to a correspondence between functional equations with particular algebraic syntax and relational constraints with certain invariance properties with respect to clones of operations on a given set. When A = {0, 1} and B is a commutative ring, such B-valued functions of n variables are represented by multilinear polynomials in n indeterminates in B[X1,...,Xn]. Functional equations are given to describe classes of field-valued functions of a specified bounded degree. Classes of Boolean and pseudo-Boolean functions are covered as particular cases. | en |
dc.relation.isversionofjnlname | Acta Cybernetica | |
dc.relation.isversionofjnlvol | 18 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2007 | |
dc.relation.isversionofjnlpages | 61-75 | en |
dc.relation.isversionofjnlpublisher | Acta Cybernetica Szeged | en |
dc.subject.ddclabel | Algèbre | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |