• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

An introduction to symbolic data analysis and the SODAS software

Esposito, Floriana; Diday, Edwin (2003), An introduction to symbolic data analysis and the SODAS software, Intelligent Data Analysis, 7, 6, p. 583-601

Type
Article accepté pour publication ou publié
Date
2003-12
Nom de la revue
Intelligent Data Analysis
Volume
7
Numéro
6
Éditeur
IOS Press
Pages
583-601
Métadonnées
Afficher la notice complète
Auteur(s)
Esposito, Floriana
Diday, Edwin
Résumé (EN)
The data descriptions of the units are called "symbolic" when they are more complex than standard ones, due to the fact that they contain internal variations and are structured. Symbolic data arise from many sources, for instance when summarizing huge Relational Data Bases by their underlying concepts. "Extracting knowledge" means obtaining explanatory results, and for this reason, "symbolic objects" are introduced and studied in this paper. They model concepts and constitute an explanatory output for data analysis. Moreover, they can be used to define queries of a Relational Data Base and propagate concepts between Data Bases. We define "Symbolic Data Analysis" (SDA) as the extension of standard Data Analysis to symbolic data tables as input in order to find symbolic objects as output. Any SDA is based on four spaces: the space of individuals, the space of concepts, the space of descriptions modelling individuals or classes of individuals, the space of symbolic objects modelling concepts. New problems arise from these four spaces, such as the quality, robustness and reliability of the approximation of a concept given by a symbolic object, the symbolic description of a class, the consensus between symbolic descriptions, and so on. In this paper we give an overview of recent developments in SDA. We briefly describe some SDA tools and methods and, in particular, we describe some dissimilarity methods for symbolic objects which are central to the majority of symbolic data analysis methods. Finally, we introduce the software prototype, developed by 17 teams from nine countries involved in the SODAS EUROSTAT project.
Mots-clés
Computer and Communication Sciences; Sodas software

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Symbolic Data Analysis and the SODAS Software 
    Noirhomme-Fraiture, Monique; Diday, Edwin (2008) Ouvrage
  • Vignette de prévisualisation
    Knowledge Discovery from Symbolic Data and the SODAS Software 
    Diday, Edwin (2001) Document de travail / Working paper
  • Vignette de prévisualisation
    A wider domain of symbolic analysis to prepare decisions : the SODAS project 
    Diday, Edwin (1999) Communication / Conférence
  • Vignette de prévisualisation
    From the statistics of data to the statistics of knowledge: Symbolic data analysis. 
    Billard, Lynne; Diday, Edwin (2003) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Strategies evaluation in environmental conditions by symbolic data analysis: application in medicine and epidemiology to trachoma 
    Guinot, Christiane; Malvy, Denis; Schémann, Jean-François; Afonso, Filipe; Haddad, Raja; Diday, Edwin (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo